Victorian Certificate of Education

STUDENT NUMBER

\square
\square
\square
\square

SYSTEMS ENGINEERING Written examination

Tuesday 14 November 2023

Reading time: 9.00 am to 9.15 am (15 minutes)
Writing time: 9.15 am to $\mathbf{1 0 . 4 5}$ am (1 hour $\mathbf{3 0}$ minutes)

QUESTION AND ANSWER BOOK

Structure of book

Section	Number of questions	Number of questions to be answered	Number of marks
A	20	20	20
B	14	14	80

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers and one scientific calculator.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 29 pages
- Detachable insert of miscellaneous formulas in the centrefold
- Answer sheet for multiple-choice questions

Instructions

- Write your student number in the space provided above on this page.
- Check that your name and student number as printed on your answer sheet for multiple-choice questions are correct, and sign your name in the space provided to verify this.
- Unless otherwise indicated, the diagrams in this book are not drawn to scale.
- All written responses must be in English.

At the end of the examination

- Place the answer sheet for multiple-choice questions inside the front cover of this book.
- You may keep the detached insert.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

SECTION A - Multiple-choice questions

Instructions for Section A

Answer all questions in pencil on the answer sheet provided for multiple-choice questions.
Choose the response that is correct or that best answers the question.
A correct answer scores 1 ; an incorrect answer scores 0 .
Marks will not be deducted for incorrect answers.
No marks will be given if more than one answer is completed for any question.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.

SECTION B

Instructions for Section B

Answer all questions in the spaces provided.
All calculations must show appropriate formulas and working.
Where an answer box is provided, write your final answer in the box.
If an answer box has a unit printed in it, give your answer in that unit.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.

SYSTEMS ENGINEERING

Written examination

FORMULA SHEET

Instructions

[^0]
Systems Engineering formulas

Mechanical

efficiency $=\frac{\text { useful energy output }}{\text { total energy input }} \times 100 \%$	efficiency $_{\text {total }}=$ efficiency $_{1} \times$ efficiency ${ }_{2}$
$F=m a$	force due to gravity $=$ mass \timesacceleration due to gravity
$P=\frac{W}{t}$	work done $=$force in direction moved\times distance
torque $=$ twisting force \timesperpendicular distance to pivot point	moment $=$ force \timesperpendicular distance to pivot point
$F_{1} d_{1}=F_{2} d_{2}$	$P=\frac{F}{A}$
speed $=\frac{\text { distance }}{\text { time }}$	gear or pulley ratio $=\frac{\text { speed of driver (rpm) }}{\text { speed of driven (rpm) }}$
gear ratio final $=$ gear ratio $1 \times$ gear ratio 2	$\frac{\text { Pulley A rpm }}{\text { Pulley B rpm }}=\frac{\text { diameter of Pulley B }}{\text { diameter of Pulley A }}$
$\frac{\text { Gear A rpm }}{\text { Gear B rpm }}=\frac{\text { Gear B number of teeth }}{\text { Gear A number of teeth }}$	
velocity ratio $=\frac{\text { distance moved by effort }}{\text { distance moved by load }}$	

Electrical

electrical energy efficiency$=\frac{\text { useful energy output }}{\text { total energy input }} \times 100 \%$		$I=\frac{V}{R}$	
$P=V I$		$P=\frac{E}{t}$	
$f=\frac{1}{T}$		$V_{\mathrm{x}}=\frac{R_{\mathrm{x}}}{R_{\text {total }}} \times V_{\text {supply }}$	
$\frac{N_{1}}{N_{2}}=\frac{V_{1}}{V_{2}}=\frac{I_{2}}{I_{1}}$		$V_{\text {peak }}=\sqrt{2} V_{\text {RMS }}$	
resistors in series	$\mathrm{R}_{\mathrm{t}}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\ldots$	resistors in parallel	$\frac{1}{\mathrm{R}_{\mathrm{t}}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}+\ldots$
two resistors in parallel	$\mathrm{R}_{\mathrm{t}}=\frac{\mathrm{R}_{1} \times \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}$	capacitors in series	$\frac{1}{\mathrm{C}_{\mathrm{t}}}=\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}+\frac{1}{\mathrm{C}_{3}}+\ldots$
capacitors in parallel	$\mathrm{C}_{\mathrm{t}}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\ldots$		

General

area of circle $=\pi r^{2}(\pi=3.14)$
circumference of circle $=2 \pi r$

Resistor colour codes

Colour	Value	Colour	Value	Colour	Tolerance
black	0	green	5	brown	1%
brown	1	blue	6	red	2%
red	2	violet	7	gold	5%
orange	3	grey	8	silver	10%
yellow	4	white	9		

STUDENT
 NAME:

JOHN STUDENT

INSTRUCTIONS:

SIGN HERE IF YOUR NAME AND NUMBER ARE PRINTED CORRECTLY.

signatue: J. Student

If your name or number on this sheet is incorrect, notify the Supervisor.
Use a PENCIL for ALL entries. For each question, shade the box which indicates your answer.
All answers must be completed like THIS example: Marks will NOT be deducted for incorrect answers.

A B D D E
NO MARK will be given if more than ONE answer is completed for any question.
If you make a mistake, ERASE the incorrect answer - DO NOT cross it out.

[^0]: Please remove from the centre of this book during reading time.
 This formula sheet is provided for your reference.

