

Victorian Certificate of Education 2018

SUPERVISOR TO ATTACH PROCESSING LABEL HERE	

		Letter
STUDENT NUMBER		

MATHEMATICAL METHODS

Written examination 1

Friday 1 June 2018

Reading time: 2.00 pm to 2.15 pm (15 minutes) Writing time: 2.15 pm to 3.15 pm (1 hour)

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
9	9	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 13 pages
- Formula sheet
- Working space is provided throughout the book.

Instructions

- Write your **student number** in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.
- All written responses must be in English.

At the end of the examination

• You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

Instructions

Answer all questions in the spaces provided.

In all questions where a numerical answer is required, an exact value must be given, unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Question 1 (4 marks)

a. Let $f(x) = \frac{e^x}{(x^2 - 3)}$.

Find f'(x).

2 marks

b. Let $y = (x + 5) \log_{e}(x)$.

Find $\frac{dy}{dx}$	when $x = 5$.
----------------------	----------------

2 marks

-		

Question 2 (4 marks)

Let $f(x) = -x^2 + x + 4$ and $g(x) = x^2 - 2$.

a. Find g(f(3)).

2 marks

- **b.** Express the rule for f(g(x)) in the form $ax^4 + bx^2 + c$, where a, b and c are non-zero integers. 2 marks

Question 3 (2 marks)	
Evaluate $\int_0^1 e^x - e^{-x} dx$.	
Question 4 (3 marks)	
Solve $\log_3(t) - \log_3(t^2 - 4) = -1$ for t .	

Question 5 (3 marks)

Let $h: R^+ \cup \{0\} \to R$, $h(x) = \frac{7}{x+2} - 3$.

a.	State the range of <i>h</i> .	1 n	nark

b.	Find the rule for h^{-1} .	2 marks

Question 6 (4 marks)

The discrete random variable X has the probability mass function

$$Pr(X = x) = \begin{cases} kx & x \in \{1, 4, 6\} \\ k & x = 3 \\ 0 & \text{otherwise} \end{cases}$$

a. Show that $k = \frac{1}{12}$.

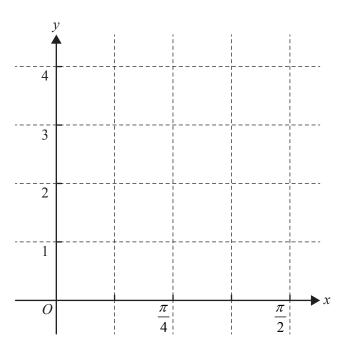
Find E(X).

b.

2 marks

1 mark

c.	Evaluate $Pr(X \ge 3)$	$X \ge 2$.


1 mark

Question 7 (9 marks)

Let
$$f: \left[0, \frac{\pi}{2}\right] \to R$$
, $f(x) = 4\cos(x)$ and $g: \left[0, \frac{\pi}{2}\right] \to R$, $g(x) = 3\sin(x)$.

a. Sketch the graph of f and the graph of g on the axes provided below.

2 marks

b. Let c be such that f(c) = g(c), where $c \in \left[0, \frac{\pi}{2}\right]$.

Find the value of sin(c) and the value of cos(c).

3 marks

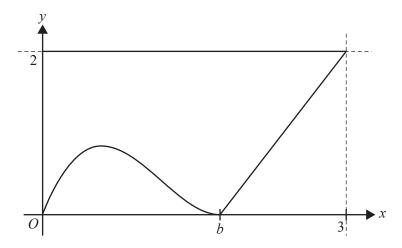
Let	A be the region enclosed by the horizontal axis, the graph of f and the graph of g .	
i.	Shade the region A on the axes provided in part a. and also label the position of c on the horizontal axis.	1 mark
ii.	Calculate the area of the region A.	3 marks

Question 8 (3 marks)

Let \hat{P} be the random variable that represents the sample proportions of customers who bring their own shopping bags to a large shopping centre.

From a sample consisting of all customers on a particular day, an approximate 95% confidence interval for the proportion p of customers who bring their own shopping bags to this large

shopping centre was determined to be $\left(\frac{4853}{50000}, \frac{5147}{50000}\right)$.

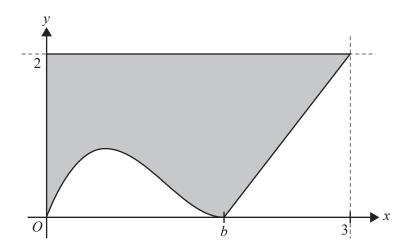

a. Find the value of \hat{p} that was used to obtain this approximate 95% confidence interval.

b. Use the fact that $1.96 = \frac{49}{25}$ to find the size of the sample from which this approximate 95% confidence interval was obtained. 2 marks

-		

Question 9 (8 marks)

The diagram below shows a trapezium with vertices at (0, 0), (0, 2), (3, 2) and (b, 0), where b is a real number and 0 < b < 2.



On the same axes as the trapezium, part of the graph of a cubic polynomial function is drawn. It has the rule $y = ax(x - b)^2$, where a is a non-zero real number and $0 \le x \le b$.

a. At the local maximum of the graph, y = b.

Find a in terms of b .	3 marks

The area between the graph of the function and the x-axis is removed from the trapezium, as shown in the diagram below.

b. Show that the expression for the area of the shaded region is $b+3-\frac{9b^2}{16}$ square units.

Find the value of <i>b</i> for which the area of the shaded region is a maximum and find this maximum area.	2 marl
	_
	_
	_
	=
	_
	_

Victorian Certificate of Education 2018

MATHEMATICAL METHODS

Written examination 1

FORMULA SHEET

Instructions

This formula sheet is provided for your reference.

A question and answer book is provided with this formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Mathematical Methods formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$	volume of a pyramid	$\frac{1}{3}Ah$
curved surface area of a cylinder	$2\pi rh$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin(A)$
volume of a cone	$\frac{1}{3}\pi r^2 h$		

Calculus

$\frac{d}{dx}(x^n) = nx^{n-1}$		$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, x$	$n \neq -1$
dx^{\prime}		J n+1	
$\frac{d}{dx}\Big((ax+b)^n\Big) = an\Big(ax+b\Big)^{n-1}$		$\int (ax+b)^n dx = \frac{1}{a(n+1)}(ax+b)^n dx$	$(ax+b)^{n+1}+c, n \neq -1$
$\frac{d}{dx}\left(e^{ax}\right) = ae^{ax}$		$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$	
$\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$		$\int \frac{1}{x} dx = \log_e(x) + c, \ x >$	0
$\frac{d}{dx}(\sin(ax)) = a \cos(ax)$	1	$\int \sin(ax)dx = -\frac{1}{a}\cos(ax) + c$	
$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$	s)	$\int \cos(ax)dx = \frac{1}{a}\sin(ax) + \frac{1}{a}$	+ <i>c</i>
$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)} = a \sec^2(ax)$			
product rule	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$	quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
chain rule	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$		

Probability

Pr(A) = 1 - Pr(A')		$\Pr(A \cup B) = \Pr(A \cup B) $	$r(A) + Pr(B) - Pr(A \cap B)$
$Pr(A B) = \frac{Pr(A \cap B)}{Pr(B)}$			
mean	$\mu = E(X)$	variance	$var(X) = \sigma^2 = E((X - \mu)^2) = E(X^2) - \mu^2$

Probability distribution		Mean	Variance
discrete	$\Pr(X=x) = p(x)$	$\mu = \sum x p(x)$	$\sigma^2 = \sum (x - \mu)^2 p(x)$
continuous	$\Pr(a < X < b) = \int_{a}^{b} f(x) dx$	$\mu = \int_{-\infty}^{\infty} x \ f(x) dx$	$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$

Sample proportions

$\hat{P} = \frac{X}{n}$		mean	$E(\hat{P}) = p$
standard deviation	$\operatorname{sd}(\hat{P}) = \sqrt{\frac{p(1-p)}{n}}$	approximate confidence interval	$\left(\hat{p}-z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \ \hat{p}+z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$