			P				n: Quest atting ar			
	· ·	••••		******		••••		******	 	
Write v	vour st	ud	ent nu	ımber	in the	ho	kes abo	ove	L	etter

Mathematical Methods Examination 1

Question and Answer Book

VCE Examination - Wednesday 6 November 2024

- Reading time is 15 minutes: 9.00 am to 9.15 am
- Writing time is 1 hour: 9.15 am to 10.15 am

Materials supplied

- · Question and Answer Book of 12 pages
- · Formula Sheet

Instructions

Students are **not** permitted to bring any technology (calculators or software), or notes of any kind, into the examination room.

Students are **not** permitted to bring mobile phones and/or any unauthorised electronic devices into the examination room.

Contentspages8 questions (40 marks)2–10

Do not write in this area.

1 mark

2 marks

Instructions

- · Answer all questions in the spaces provided.
- · Write your responses in English.
- In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.
- In questions where more than one mark is available, appropriate working must be shown.
- Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Question	1	(3	marks

a. Let $y = e^x \cos(3x)$.

Find $\frac{dy}{dx}$.		

b. Let $f(x) = \log_e(x^3 - 3x + 2)$.

Find f'(3).

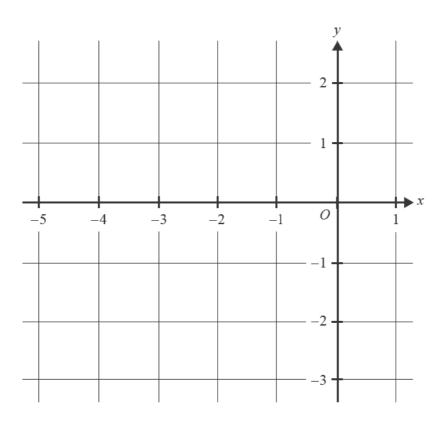
<i>J</i> ()		

Do not write in this area.

Question 2 (3 marks)

Consider the simultaneous linear equations

$$3kx - 2y = k + 4$$
$$(k-4)x + ky = -k$$


where $x, y \in R$	and k is a real constant	ant.			
Determine the v	value of k for which	the system of	equations has n	o real solution.	

Question 3 (5 marks)

Let
$$g: R \setminus \{-3\} \to R$$
, $g(x) = \frac{1}{(x+3)^2} - 2$.

a. On the axes below, sketch the graph of y = g(x), labelling all asymptotes with their equations and axis intercepts with their coordinates.

3 marks

b. Determine the area of the region bounded by the line x = -2, the x-axis, the y-axis and the graph of y = g(x).

Ougstion	A	12	marke
Question	4	ıs	marks

Let X be a binomial random variable where $X \sim \text{Bi}\left(4, \frac{9}{10}\right)$.

a. Find the standard deviation of X.

1 mark

b. Find Pr(X < 2).

2 marks

Question 5 (6 marks)

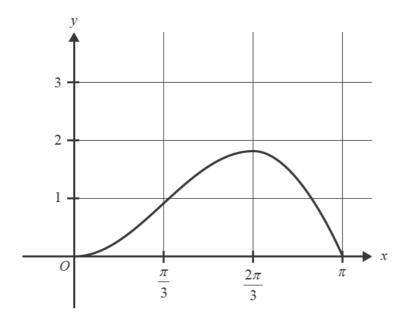
The function $h:[0,\infty)\to R$, $h(t)=\frac{3000}{t+1}$ models the population of a town after t years.

a. Use the model h(t) to predict the population of the town after four years.

1 mark

b. A new function, h_1 , models a population where $h_1(0) = h(0)$ but h_1 decreases at half the rate of h at any point in time.

State a sequence of two transformations that maps h to this new model h_1 .


2 marks

- **c.** In the town, 100 people were randomly selected and surveyed, with 60 people indicating that they were unhappy with the roads.
 - i. Determine an approximate 95% confidence interval for the proportion of people in the town who are unhappy with the roads. Use z = 2 for this confidence interval.

i	ii. A new sample of n people results in the same sample proportion.	
	Find the smallest value of n to achieve a standard deviation of $\frac{\sqrt{2}}{50}$ for the sample proportion.	1 mark
_		_
_		_
	tion 6 (4 marks) $2\log_3(x-4) + \log_3(x) = 2 \text{ for } x.$	

Question 7 (9 marks)

Part of the graph of $f:[-\pi,\pi] \to R$, $f(x) = x \sin(x)$ is shown below.

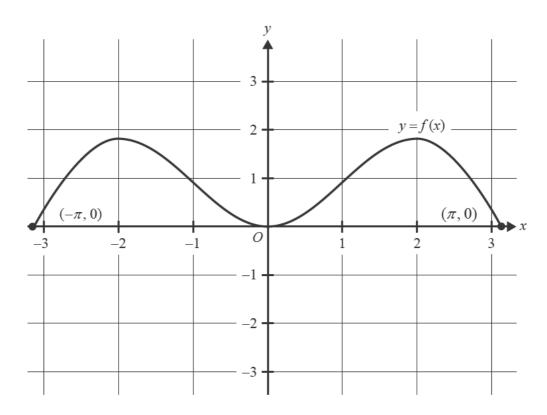
a. Use the trapezium rule with a step size of $\frac{\pi}{3}$ to determine an approximation of the total area between the graph of y = f(x) and the x-axis over the interval $x \in [0, \pi]$.

3 marks

1 mark

b. i. Find f'(x).

ii. Determine the range of f'(x) over the interval $\left[\frac{\pi}{2}, \frac{2\pi}{3}\right]$.


1 mark

III. Hence, verify that f(x) has a stationary point for $x \in \left[\frac{\pi}{2}, \frac{2\pi}{3}\right]$.

1 mark

c. On the set of axes below, sketch the graph of y = f'(x) on the domain $[-\pi, \pi]$, labelling the endpoints with their coordinates.

You may use the fact that the graph of y = f'(x) has a local minimum at approximately (-1.1, -1.4) and a local maximum at approximately (1.1, 1.4).

Question 8 (7 marks)

Let $g: R \to R$, $g(x) = \sqrt[3]{x-k} + m$, where $k \in R \setminus \{0\}$ and $m \in R$.

Let the point *P* be the *y*-intercept of the graph of y = g(x).

a. Find the coordinates of P, in terms of k and m.

1 mark

b. Find the gradient of g at P, in terms of k.

2 marks

c. Given that the graph of y = g(x) passes through the origin, express k in terms of m.

1 mark

d. Let the point Q be a point different from the point P, such that the gradient of g at points P and Q are equal.

Given that the graph of y = g(x) passes through the origin, find the coordinates of Q in terms of m.

This page is blank.

Mathematical Methods Examination 1

2024 Formula Sheet

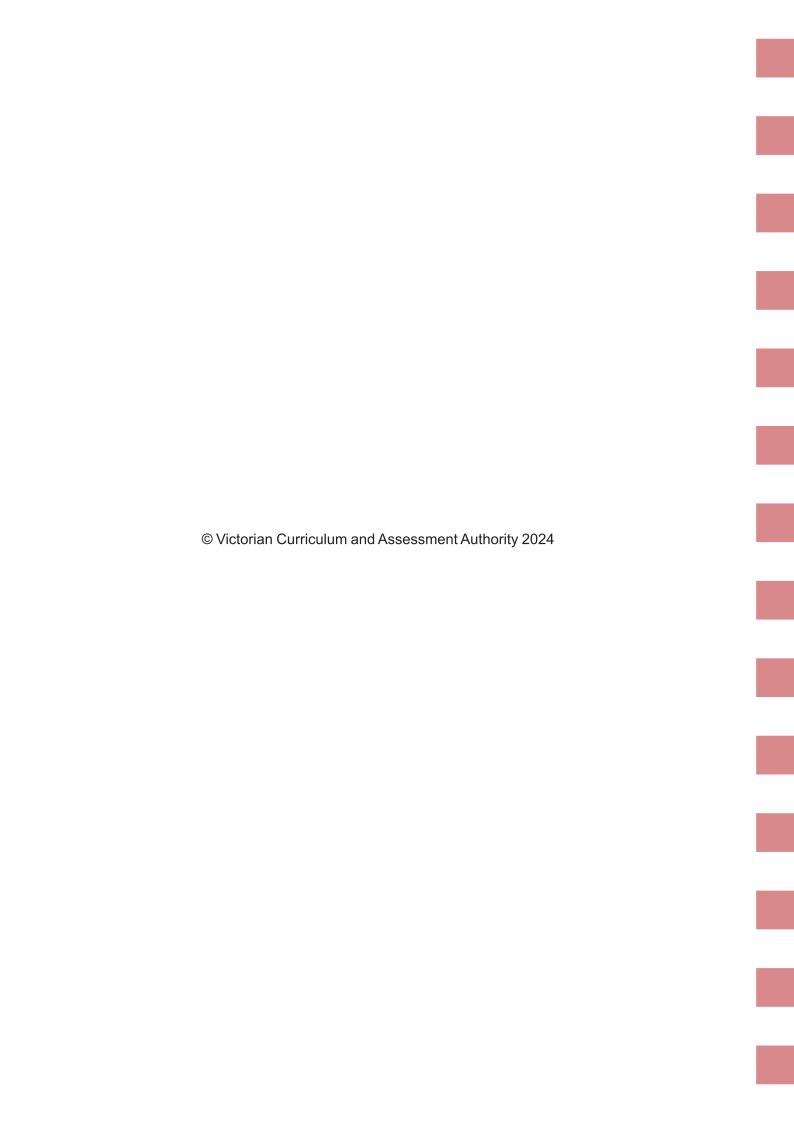
You may keep this Formula Sheet.

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$	volume of a pyramid	$\frac{1}{3}Ah$
curved surface area of a cylinder	$2\pi rh$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin(A)$
volume of a cone	$\frac{1}{3}\pi r^2 h$		

Calculus

$\frac{d}{dx}(x^n) = nx^{n-1}$		$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, \ n \neq -1$			
$\frac{d}{dx}\Big((ax+b)^n\Big) = 0$	$an(ax+b)^{n-1}$	$\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + c, n \neq -1$			
$\frac{d}{dx}\left(e^{ax}\right) = ae^{ax}$		$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$			
$\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$		$\int \frac{1}{x} dx = \log_e(x) + c$	x, x > 0		
$\frac{d}{dx}(\sin(ax)) = a$	$\cos(ax)$	$\int \sin(ax)dx = -\frac{1}{a}\cos(ax) + c$			
$\frac{d}{dx}(\cos(ax)) = -$	$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$		$\int \cos(ax)dx = \frac{1}{a}\sin(ax) + c$		
$\frac{d}{dx}(\tan(ax)) = \frac{1}{\cos(ax)}$	$\frac{a}{\cos^2(ax)} = a\sec^2(ax)$				
product rule	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$	quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$		
chain rule	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$	Newton's method	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$		
trapezium rule approximation	rule $Area \approx \frac{x_n - x_0}{2\pi} \left f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-2}) + 2f(x_{n-1}) + f(x_n) \right $				


Probability

$\Pr\left(A\right) = 1 - \Pr\left(A\right) = 1 - \Pr\left($	· (A')	$\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B)$		
$\Pr(A B) = \frac{\Pr(A \cap B)}{\Pr(B)}$				
mean	$\mu = E(X)$	variance	$var(X) = \sigma^2 = E((X - \mu)^2) = E(X^2) - \mu^2$	
binomial coefficient	$\binom{n}{x} = \frac{n!}{x!(n-x)!}$			

Pro	bability distribution	Mean	Variance
discrete	$\Pr\left(X=x\right) = p(x)$	$\mu = \sum x p(x)$	$\sigma^2 = \sum (x - \mu)^2 p(x)$
binomial	$\Pr(X = x) = \binom{n}{x} p^x (1 - p)^{n - x}$	$\mu = np$	$\sigma^2 = np (1 - p)$
continuous	$\Pr(a < X < b) = \int_{a}^{b} f(x) dx$	$\mu = \int_{-\infty}^{\infty} x f(x) dx$	$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$

Sample proportions

$\hat{P} = \frac{X}{n}$		mean	$E(\hat{P}) = p$
standard deviation	$\operatorname{sd}(\hat{P}) = \sqrt{\frac{p(1-p)}{n}}$	approximate confidence interval	$\left(\hat{p}-z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \ \hat{p}+z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$

