2024 VCE Mathematical Methods Examination 2

Marking guidelines and sample responses

Acknowledgement

The Victorian Curriculum and Assessment Authority proudly acknowledges and pays respect to Victoria's Aboriginal and Torres Strait Islander communities and their rich and enduring cultures.

We acknowledge Aboriginal and Torres Strait Islander people as Australia's first peoples and as the Traditional Owners and custodians of the lands and waters on which we rely. We pay respect to Elders past and present of the lands where we conduct our work and recognise their ongoing contributions as the first educators on the land now known as Victoria.

Authorised and published by the Victorian Curriculum and Assessment Authority Level 7, 200 Victoria Parade East Melbourne VIC 3002

© Victorian Curriculum and Assessment Authority 2024

No part of this publication may be reproduced except as specified under the *Copyright Act 1968* or by permission from the VCAA. Excepting third-party elements, schools may use this resource in accordance with the <u>VCAA educational allowance</u>. For more information go to https://www.vcaa.vic.edu.au/Footer/Pages/Copyright.aspx.

The VCAA provides the only official, up-to-date versions of VCAA publications. Details of updates can be found on the VCAA website at www.vcaa.vic.edu.au.

This publication may contain copyright material belonging to a third party. Every effort has been made to contact all copyright owners. If you believe that material in this publication is an infringement of your copyright, please email the Copyright Officer vcaa.copyright@edumail.vic.gov.au

Copyright in materials appearing at any sites linked to this document rests with the copyright owner/s of those materials, subject to the Copyright Act. The VCAA recommends you refer to copyright statements at linked sites before using such materials.

The VCAA logo is a registered trademark of the Victorian Curriculum and Assessment Authority.

Contact us if you need this information in an accessible format, for example, large print or audio.

Telephone (03) 9032 1635 or email vcaa.publications@education.vic.gov.au

2024 VCE Mathematical Methods Examination 2 Marking guidelines and sample responses

Marking guidelines will indicate the initial criteria that will be used to award marks.

This report provides sample responses, or an indication of what responses may have included.

Section A

Question	Answer
1	Α
2	D
3	С
4	В
5	D
6	В
7	С
8	Α
9	С
10	В

Question	Answer
11	В
12	Α
13	Α
14	В
15	Α
16	D
17	D
18	В
19	С
20	С

Section B

Question 1a

Answer	1 mark
--------	--------

$$-1, -a, 2, 2a$$

Question 1bi

Answer	1 mark
Answer	1 mark

$$-2, -\frac{1}{2}, 0$$

Question 1bii

Consequential 1 m

$$R\setminus\left\{-2,-\frac{1}{2},0,1\right\}$$

Question 1ci

Answer	1 mark

$$2(x-2)(x+1)(2x-1)$$
 OR $4x^3-6x^2-6x+4$

Question 1cii

Answer	1 mark

$$\left(\frac{1}{2}, \frac{81}{16}\right)$$
 OR $\left(0.5, 5.0625\right)$

Question 1ciii

Answer 1 mark

$$(-1,\frac{1}{2})\cup(2,\infty)$$

Question 1civ

Method	1 mark
Answer	1 mark

Tangent lines are

$$y = -3\sqrt{3}x + \frac{3\sqrt{3}}{2} + \frac{27}{4}$$

$$y = 3\sqrt{3}x - \frac{3\sqrt{3}}{2} + \frac{27}{4}$$

These lines intersect at $\left(\frac{1}{2}, \frac{27}{4}\right)$

Question 1di

Translate $\frac{1}{2}$ units to the right and $\frac{17}{16} = 1.0625$ units up

Question 1dii

Answer	1 mark
Answer	1 mark

Dilate by a factor of $\frac{3}{\sqrt{10}} = \frac{3\sqrt{10}}{10}$ from the y-axis

Translate $\frac{1}{2}$ units to the right

Translate $\frac{9}{4}$ units up

Question 2a

Answer	1 mark
Answer	1 mark

$$f'(t) = \begin{cases} 30 & 0 \le t < \frac{1}{3} \\ 0 & t > \frac{1}{3} \end{cases}$$

Question 2b

Answer	1 mark
--------	--------

20

Question 2ci

Answer	1 mark
--------	--------

 $60e^{-6t}$

Question 2cii

Answer	1 mark
--------	--------

0.299

Question 2d

Answer	1 mark
--------	--------

0.27

Question 2e

Answer	1 mark

0.12

Question 2fi

Method	1 mark

$$0.3 + Ae^{-10(0.4)} = 1.5 \text{ OR } 0.3 + Ae^{-4} = 1.5$$

$$Ae^{-4} = 1.2$$

$$A = 1.2e^4$$

Question 2fii

Answer	1 mark
--------	--------

 $\frac{1}{3}$

Question 2fiii

Method	1 mark
Answer	1 mark

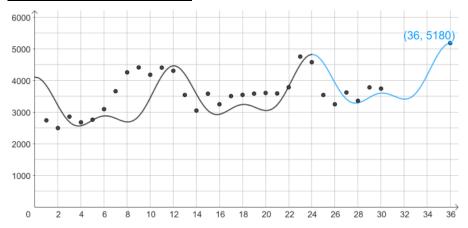
$$\int_{0.4}^{T} \left(0.3 + Ae^{-10t} \right) dt = 0.4$$

1.33

Question 3ai

Method	1 mark
Method	1 mark
Answer	1 mark

$$p(2) = 2500$$
, $p(11) = 4400$, $p'(2) = 0$, $p'(11) = 0$
 $a = -5.21$, $b = 101.65$, $c = -344.03$, $d = 2823.18$


Question 3aii

Answer	1 mark
Answer	1 mark

$$h = 12$$
, $k = 350$

Question 3bi

Answer	1 mark
Answer	1 mark

Question 3bii

Answer 1	mark
----------	------

360

© VCAA

Question 3biii

Answer	1 mark	
$-400\pi \sin\left(\frac{\pi t}{3}\right)$	$350\pi\sin\left(\frac{\pi t}{6}\right)$	+ 30
3	3	-+30

Question 3biv

Answer	1 mark
Answer	1 mark

Maximum instantaneous rate of change ≈ 725 (million dollars per month)

$$t = 10.2$$
, $t = 22.2$, $t = 34.2$

Question 4a

Answer	1 mark
$\int_{22}^{30} f(x) dx$	

Question 4bi

Answer	1 mark
--------	--------

18

Question 4bii

Method	1 mark
Answer	1 mark

Method 1

$$Var(X) = \int_0^{30} \frac{1}{67500} x^2 (30 - x) \cdot x^2 dx - 18^2$$

= 36

Method 2 (formula sheet)

$$Var(X) = \int_0^{30} \frac{1}{67500} x^2 (30 - x) \cdot (x - 18)^2 dx$$

= 36
$$sd(X) = 6$$

Question 4biii

Method	1 mark
Answer	1 mark

$$= \frac{\Pr(X > 23)}{\Pr(X > 18)} = \frac{\int_{23}^{30} f(x)dx}{\int_{18}^{30} f(x)dx} = \frac{0.23392...}{0.5248}$$

$$=0.446$$

Question 4ci

Method	1 mark
--------	--------

$$0.234 \times 0.234 \times 0.5$$

$$=0.054756\times0.5$$

Question 4cii

Answer	1 mark
Answer	1 mark

0.700, 0.273

Question 4di

Method	1 mark
Answer	1 mark

$$Y \sim \text{Bi}(35, 0.234)$$

$$\Pr(\hat{P} > 2) = \Pr(Y > 7) = \Pr(Y \ge 8)$$
$$= 0.595$$

Question 4dii

Method	1 mark
Answer	1 mark

Method 1

$$E(\hat{P}) = 0.234$$
, $sd(\hat{P}) = \sqrt{\frac{0.234 \times (1 - 0.234)}{35}} \approx 0.072$

$$Pr(0.162... < \hat{P} < 0.305...) = Pr(6 \le Y \le 10) = 0.684$$

Method 2

$$E(Y) = 35 \times 0.234 = 8.19$$
, $sd(Y) = \sqrt{35 \times 0.234 \times (1 - 0.234)} \approx 2.505$

$$Pr(5.68529... < Y < 10.69470...) = Pr(6 \le Y \le 10) = 0.684$$

^{=0.027}

Question 4ei

Answer	1 mark
--------	--------

(0.107, 0.293)

Question 4eii

Answer	1 mark
--------	--------

11, 39

© <u>VCAA</u>

Question 5ai

Answer	1 mark
(0.9,1.0) OR (0.9,1)	

Question 5aii

Answer 1 ma	ırk
-------------	-----

$$[-1,1]$$

Question 5bi

Answer	1 mark
--------	--------

$$2\cos(2x)\cos(\sin(2x))$$

Question 5bii

Method	1 mark
Method	1 mark

If
$$\cos(\sin(2x)) = 0$$

then
$$\sin(2x) = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \dots$$

But $\sin(2x)$ has range [-1,1]

Hence no solutions

Question 5biii

$$\frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$$

Question 5biv

Answer	1 mark
--------	--------

$$\left[-\sin(1),\sin(1)\right]$$

Question 5ci

Answer	1 mark
--------	--------

$$2\int_{0}^{\pi} (g \circ f)(x) - (f \circ g)(x) dx$$

OR

$$2\int_{0}^{\pi}\sin(2\sin(x))-\sin(\sin(2x))dx$$

OR

$$2\int_{\pi}^{2\pi} (f\circ g)(x) - (g\circ f)(x)dx$$

OR

$$2\int_{\pi}^{2\pi} \sin(\sin(2x)) - \sin(2\sin(x)) dx$$

Question 5cii

Answer 1 mark

4.97

Question 5d

Method	1 mark
Answer	1 mark

Require $ran(g) \subseteq dom(f_1)$

$$[-1,1]\not\in(0,2\pi)$$

$$(0,1] \subseteq (0,2\pi), 0 < \sin(2x) \le 1$$

$$\left(0,\frac{\pi}{2}\right) \cup \left(\pi,\frac{3\pi}{2}\right)$$