General Mathematics Examination 1

2024 Formula Sheet

You may keep this Formula Sheet.

Data analysis

standardised score	$z = \frac{x - \overline{x}}{s_x}$	
lower and upper fence in a boxplot	lower $Q1 - 1.5 \times IQR$ upper $Q3 + 1.5 \times IQR$	
least squares line of best fit	$y = a + bx$, where $b = r \frac{s_y}{s_x}$ and $a = \overline{y} - b\overline{x}$	
residual value	residual value = actual value – predicted value	
seasonal index	$seasonal index = \frac{actual figure}{deseasonalised figure}$	

Recursion and financial modelling

first-order linear recurrence relation	$u_0 = a, \qquad u_{n+1} = Ru_n + d$
effective rate of interest for a compound interest loan or investment	$r_{effective} = \left[\left(1 + \frac{r}{100n} \right)^n - 1 \right] \times 100\%$

Matrices

determinant of a 2 × 2 matrix	$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $\det A = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$
inverse of a 2 × 2 matrix	$A^{-1} = \frac{1}{\det A} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$, where $\det A \neq 0$
recurrence relation	$S_0 = \text{initial state}, \qquad S_{n+1} = T S_n + B$
Leslie matrix recurrence relation	$S_0 = \text{initial state}, \qquad S_{n+1} = L S_n$

Networks and decision mathematics

Euler's formula	v+f=e+2
-----------------	---------

