General Mathematics Examination 1 2024 Formula Sheet You may keep this Formula Sheet. # Data analysis | standardised score | $z = \frac{x - \overline{x}}{s_x}$ | | |------------------------------------|---|--| | lower and upper fence in a boxplot | lower $Q1 - 1.5 \times IQR$ upper $Q3 + 1.5 \times IQR$ | | | least squares line of best fit | $y = a + bx$, where $b = r \frac{s_y}{s_x}$ and $a = \overline{y} - b\overline{x}$ | | | residual value | residual value = actual value – predicted value | | | seasonal index | $seasonal index = \frac{actual figure}{deseasonalised figure}$ | | # Recursion and financial modelling | first-order linear recurrence relation | $u_0 = a, \qquad u_{n+1} = Ru_n + d$ | |---|---| | effective rate of interest for a compound interest loan or investment | $r_{effective} = \left[\left(1 + \frac{r}{100n} \right)^n - 1 \right] \times 100\%$ | ### **Matrices** | determinant of a 2 × 2 matrix | $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $\det A = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$ | |-----------------------------------|--| | inverse of a 2 × 2 matrix | $A^{-1} = \frac{1}{\det A} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$, where $\det A \neq 0$ | | recurrence relation | $S_0 = \text{initial state}, \qquad S_{n+1} = T S_n + B$ | | Leslie matrix recurrence relation | $S_0 = \text{initial state}, \qquad S_{n+1} = L S_n$ | ### **Networks and decision mathematics** | Euler's formula | v+f=e+2 | |-----------------|---------| |-----------------|---------|