

© VCAA

Unit 3 Software Development – 2024

Outcome 1 Software development: programming – Template for developing an assessment task – Plan

Outcome 1

On completion of this unit the student should be able to interpret teacher-provided solution requirements and designs, and apply a range of functions and
techniques using a programming language to develop and test working software modules.

Assessment task development – Planning for the case study

Create a scenario that is a real-world example that provides students with solution requirements and designs that will
enable them to apply a range of functions and techniques using a programming language to develop and test
working software modules. The outcome may be completed as three to six modules (tasks). Key content within the
tasks should be based on the targeted key knowledge and key skills. The total number of the marks for the outcome
should be out of 100.

Key knowledge Key skills VCAA Performance descriptors (Very high)

• methods for documenting a problem, need or
opportunity

• methods for determining solution requirements,
constraints and scope

• methods of representing designs, including
data dictionaries, mock-ups, object
descriptions and pseudocode

• interpret solution requirements and designs to
develop working modules

• All solution requirements and designs are
interpreted accurately to developing working
modules.

Content to be included in the assessment task should introduce students to a scenario. The scenario should provide
solution requirements and designs for between three and six modules. These modules should vary in length and
difficulty, providing students with sufficient opportunities to demonstrate their knowledge and to meet the
requirements of the outcome. A range of appropriate design tools should be used. Students are not to complete
designs themselves. Software modules can be small programs that may or may not form part of a larger software
solution.

• characteristics of data types

• types of data structures, including associative
arrays (or dictionaries or hash tables), one-
dimensional arrays (single data type, integer
index) and records (varying data types, field
index)

• formatting and structural characteristics of files,
including delimited (CSV), plain text (TXT) and
XML file formats

• use a range of data types and data structures
• Comprehensive selection of relevant data

types and data structures to develop working
modules.

The scenario with the solution requirements and designs should enable students to determine what data types and
data structures they will need to use for the software modules.

• a programming language as a method for
developing working modules that meet
specified needs

• naming conventions for solution elements

• processing features of a programming
language, including classes, control structures,
functions, instructions and methods

• algorithms for sorting, including selection sort
and quick sort

• algorithms for binary and linear searching

• use and justify appropriate processing features
of a programming language to develop working
modules

• Comprehensive selection and use of relevant
processing features of the programming
language to develop all working modules.

• Comprehensive justification and explanation of
how the selection of appropriate processing
features of the programming language are
used to develop working modules.

The scenario with the solution requirements and designs should enable students to determine the appropriate
selection and use of processing features, naming conventions and sorting and searching algorithms they will need to
develop the software modules. An appropriate programming language should be used by the students (Refer to the
Programming requirements document on the study page). Students are to justify and explain their selection of
processing features and sorting and searching algorithms used to develop their working modules. This written
justification and explanation could be included within the internal documentation or as a separate written report.

• validation techniques, including existence
checking, range checking and type checking

• techniques for checking that modules meet
design specifications, including trace tables
and construction of test data

• develop and apply suitable validation, testing
and debugging techniques using appropriate
test data

• Comprehensive use of relevant data validation
techniques are applied efficiently and
effectively to check the reasonableness of all
input data.

• Comprehensive use of test data is expressed
in a testing table, with both expected and
actual output stated, and showing detailed
evidence of debugging.

Students are to use and apply relevant data validation techniques to check all input data. A testing table is to be
developed that involves the testing of all validation, objects and processing such as calculations, etc. The testing
table should include columns for expected and actual output and show evidence of tests that work and don’t work.

• purposes and characteristics of internal
documentation, including meaningful
comments and syntax

• document the functioning of modules and the
use of processing features through internal
documentation

• All software modules include comprehensive
internal documentation regarding the
functioning of modules and use of selected
processing features.

Students are to include internal documentation within their working modules. Internal documentation should state
how the modules function and describe the code involving processing and validation.

https://www.vcaa.vic.edu.au/Footer/Pages/Copyright.aspx

