[image: Document header showing logos for Victorian Curriculum and Assessment Authority and the Victorian State Government.]

VCE Applied Computing: Software Development: Performance Descriptors Unit 3 Outcome 1 	
	[bookmark: _Hlk182477425]SOFTWARE DEVELOPMENT UNIT 3 OUTCOME 1
SCHOOL-ASSESSED COURSEWORK

	Performance descriptors

	
	

	Unit 3
Outcome 1
On completion of this unit the student should be able to interpret teacher-provided solution requirements and designs and use appropriate features of an object-oriented programming language to develop working software modules.
	DESCRIPTOR: typical performance in each range

	
	Key skill
	Very Low
	Low
	Medium
	High
	Very high

	
	
interpret solution requirements and designs

	Identifies functional requirements.
	Interprets functional and non-functional requirements.
Some requirements are interpreted accurately to develop software modules.
	Interprets functional and non-functional requirements and designs, including:
· mock-ups
· data dictionaries.
Some requirements and designs are interpreted accurately to develop software modules.
	Interprets functional and non-functional requirements and designs, including:
· IPO charts
· pseudocode
· object descriptions.
Most requirements and designs are accurately interpreted to develop working software modules.
	Interprets functional and non-functional requirements and designs.
All requirements and designs are accurately interpreted to fully develop four working software modules.

	
	use a range of data types, data structures and data sources
	Identifies data types, including text, numeric and Boolean.
	Uses data types for local variables.
Outlines, in the internal documentation, why the selected data types were used.
	Uses appropriate data types for global variables and data structures, including arrays and records.
Explains, in the internal documentation, why the selected data types and data structures were used.
	Uses appropriate data types, data structures and data sources, including plain text, delimited and XML files.
Explains, in the internal documentation, why the selected data sources were used.
	Uses a range of data types, data structures and data sources.
Explains and justifies, in the internal documentation, why the selected data types, data structures and data sources were used.

	
	
use and justify appropriate features of an OOP language to develop working software modules

	Develops software modules using:
· instructions
· arithmetic operators.

	Develops software modules using:
· local variables and constants
· logical and conditional operators
· control structures of sequence and selection.
	Develops software modules using:
· global variables
· the control structure of iteration/repetition.
Identifies, in the internal documentation, the features used within the OOP language.
Develops a GUI for at least one software module.
	Develops working software modules using:
· functions and methods
· sorting and searching algorithms.
Explains, in the internal documentation, the purpose of the features used within the OOP language.
Develops a GUI for at least two software modules.
	Develops working software modules using:
· classes and objects.
Justifies, in the internal documentation, the use of all features within the OOP language.

	
	
develop and apply suitable naming conventions and validation techniques within modules

	Identifies naming conventions for use within software modules.
Identifies input data for validation.
	Applies naming conventions to variables within software modules.
Validates input data using one of the following checks:
· existence
· type
· range.
	Applies naming conventions to variables and interface controls within software modules.
Validates input data using two of the following checks:
· existence
· type
· range.
Some inconsistencies are present.
	Applies naming conventions to variables, interface controls and code structures within working software modules.
Validates data using all the following checks:
· existence
· type
· range.
Minor inconsistencies are present.
	Applies suitable naming conventions to all solution elements within working software modules.
Validates all relevant input data and checks the reasonableness of all input data.
No inconsistencies are present.

	
	document the functioning of modules using internal documentation
	Identifies the functioning of software modules.
	Outlines the functioning of software modules using internal documentation.
	Uses internal documentation to describe the functionality of software modules and the use of data.
Displays evidence of code maintenance.
Some issues with clarity exist.
	Uses internal documentation to explain the functionality of software modules and the use of data and code structures.
Uses placeholder comments within software modules for future development.
Minor issues with clarity exist.
	Uses internal documentation to explain and justify the use of all data, code structures and functionality of all software modules.
Clear and concise.

	
	

develop and apply suitable debugging and testing techniques using appropriate test data

	Lists test data for software modules.
Syntax errors are present.
	Outlines some test data for software modules in a testing table.
The testing table is incomplete.
Uses debugging statements to check functionality of software modules.
Logic errors are present.
	Identifies test data for software modules in a testing table with expected output stated.
Identifies input data to test validation checks.
Uses breakpoints to support debugging and testing.
Minor logic errors are present.
	Constructs test data for working software modules using testing tables.
Documents test cases comparing both expected and actual output.
Documents suggested actions for rectifying errors in the testing tables.
Run-time errors are present.
	Reports and displays evidence of test data for working software modules.
Documents a complete list of actions taken for failed tests in a testing table that compares both expected and actual output.
All modules function correctly.

KEY to marking scale based on the Outcome contributing 100 marks
	Very Low 1–20
	Low 21–40
	Medium 41–60
	High 61–80
	Very High 81–100

	© VCAA
	
	

[image:]

	© VCAA[image:]
	
	Page 2

[image:]
image3.jpg

image1.jpg

image2.jpg

