
© VCAA 

Unit 1 Applied Computing 2025

Outcome 2 Programming – Template for developing an assessment task – Blank 

Outcome 2 

On completion of this unit the student should be able to interpret teacher-provided solution requirements to 

design and develop a software solution using an object-oriented programming language. 

Assessment task development 

Key knowledge Key skills 

• emerging trends in programming languages and artificial

intelligence-based (AI) code generators for the development of

software solutions, such as:

− low-code development approaches

− readability and/or maintainability improvements

• characteristics of functional and non-functional requirements,

constraints and scope

• key legal requirements relating to intellectual property and

copyright while designing and developing software

• interpret solution requirements to

develop a software solution

• design tools for representing the functionality and appearance of

solution designs, such as:

− mock-ups

− input-process-output (IPO) charts

− flowcharts/pseudocode

• select and use appropriate design

tools to represent solution designs

• characteristics of data types, such as:

− text (character, string)

− numeric (integer, floating point, date/time)

− Boolean

• types of data structures, such as:

− one-dimensional arrays

− lists

− records (varying data types, field index)

• use a range of data types and data

structures

• principles of OOP, such as:

− abstraction

− encapsulation

• features of a programming language, such as:

− variables, and initialising, accessing and storing data in

variables

− control structures (sequence, selection and

iteration/repetition)

− arithmetic, logical and conditional operators

− procedures, functions and methods

• develop a software solution using

appropriate features of an OOP

language

https://www.vcaa.vic.edu.au/Footer/Pages/Copyright.aspx


Type title here 

© VCAA Page 2 

Unit 1 Applied Computing 2025

Outcome 2 Programming – Template for developing an assessment task – Blank 

• naming conventions for solution elements, such as:

− Hungarian notation

− camel casing

• purposes of internal documentation, such as:

− explaining data and code structures

− code maintenance

• document the functioning of a

software solution through internal

documentation

• validation techniques for data, such as:

− existence checking

− type checking

− range checking

• debugging and testing techniques for checking software solutions

function correctly, such as:

− test tables to compare expected and actual output

− construction of relevant test data

− breakpoints

− debugging output statements

• design and apply suitable validation,

debugging and testing techniques

https://www.vcaa.vic.edu.au/

