
© VCAA

Unit 3 Software Development 2025

Outcome 1 Software development: programming – Template for developing an assessment task – Plan

Outcome 1

On completion of this unit the student should be able to interpret teacher-provided solution requirements and designs and use
appropriate features of an object-oriented programming language to develop working software modules.

Assessment task development

Create a scenario that is a real-world example that provides students with solution
requirements and designs to enable them to develop four working software modules using
appropriate features of an object-oriented programming language. At least two modules must
include a GUI and all modules must include testing. Key content within the assessment task
should be based on the targeted key knowledge and key skills. The total number of marks for
the outcome is to be out of 100.

Key knowledge Key skills

• emerging trends in programming using artificial intelligence, including:

− using prompts to generate code

− automated debugging and testing of modules

− code optimisation

− responsible and ethical use of artificial intelligence tools

• characteristics of functional and non-functional requirements, constraints and scope

• design tools for representing modules, including:

− data dictionaries

− mock-ups

− object descriptions

− input-process-output (IPO) charts

− pseudocode

• interpret solution requirements

and designs

Content to be included in the assessment task should introduce students to a scenario. The
scenario should provide students with solution requirements and designs for four modules. A
range of appropriate design tools should be used. Students are not to complete designs
themselves. Software modules can be small programs that may or may not form part of a larger
software solution.

• characteristics of data types, including:

− text (character, string)

− numeric (integer, floating point, date/time)

− Boolean

• characteristics of data structures, including:

− one-dimensional arrays

− two-dimensional arrays

− records (varying data types, field index)

• characteristics of data sources (plain text (TXT), delimited (CSV) and XML files),

including:

− structure

− reasons for use

• use a range of data types, data
structures and data sources

The scenario with the solution requirements and designs should enable students to determine
what data types, data structures and data sources they will need to use for the software
modules.

https://www.vcaa.vic.edu.au/Footer/Pages/Copyright.aspx

Type title here

© VCAA Page 2

Unit 3 Software Development 2025

Outcome 1 Software development: programming – Template for developing an assessment task – Plan

• principles of OOP, including:

− abstraction

− encapsulation

− generalisation

− inheritance

• features of a programming language, including:

− local and global variables, and constants

− data types

− instructions and control structures (sequence, selection, iteration/repetition)

− arithmetic, logical and conditional operators

− graphical user interfaces (GUIs)

− functions and methods

− classes and objects

• algorithms for sorting and searching, including:

− selection sort

− quick sort

− binary search

− linear search

• use and justify appropriate
features of an OOP language to
develop working software
modules

The scenario with the solution requirements and designs should enable students to determine
the appropriate selection and use of features of an OOP language and the use of sorting and
searching algorithms they will need to develop the working software modules. An appropriate
OOP language is to be used by the students. Students are to justify and explain their selection
of features and sorting and searching algorithms used to develop their working modules. This
written justification and explanation could be included within the internal documentation or as a
separate written report.

• purposes and features of naming conventions for solution elements (variables,

interface controls, code structures), including:

− Hungarian notation

− camel casing

− snake casing

• validation techniques for data, including:

− existence checking

− type checking

− range checking

• develop and apply suitable
naming conventions and
validation techniques within
modules

Students are to apply suitable naming conventions and validation techniques when developing
the software modules.

• purposes of internal documentation, including:

− explaining and justifying data and code structures

− code maintenance

− placeholder comments for future development (stubs)

• document the functioning of
modules using internal
documentation

Students are to write internal documentation within their working software modules. Internal
documentation should state how the modules function and describe the code involving
processing and validation.

• types of errors, including:

− syntax

− logic

− runtime (overflow, index out of range, type mismatch, divide by zero)

• debugging and testing techniques for checking modules function correctly,

including:

− use of breakpoints

− use of debugging statements

− construction of relevant test data

• develop and apply suitable
debugging and testing techniques
using appropriate test data

They are to design a testing table that involves the testing of all validation, objects and
processing, such as calculations, etc. The testing table should also include columns for the
expected and actual output and show evidence of tests that work and don’t work. Suitable
debugging techniques should be applied to ensure all the tests of the software modules meet
the solution requirements.

https://www.vcaa.vic.edu.au/

Type title here

© VCAA Page 3

Unit 3 Software Development 2025

Outcome 1 Software development: programming – Template for developing an assessment task – Plan

− test cases comparing expected and actual output in testing tables

https://www.vcaa.vic.edu.au/

