[image: image1.png]4N Victorian Curriculum

Foundation-10

[image: image2.png]vaumn CURRICULUM
AND ASSESSMENT AUTHORITY

Digital Coding (Technologies) – Programming in the Digital Technologies Curriculum: Algorithms 7-8 Part A
Slide 1: Introduction
Welcome to this tutorial on Algorithms this video will cover:

· Curriculum Links

· Defining a problem

· Working out requirements

· Designing an algorithm

This video is part 1 of the series, part 2 will cover:

· Creating a function

· English Instructions

· Testing and tracing
Slides 2 – 5: Curriculum links
This tutorial will briefly touch on defining a problem and working the out the functional requirements before examining how to design an algorithm to solve a problem. The links to the Digital Technologies curriculum are very clear.
Slide 6 & 7: Defining a problem
A fun problem to solve is a classic guessing game. Guess a number from 1 to a 100, your guess can be too high, too low or correct. A player can have up to seven guesses. Problem: Create a guessing game program.

Slide 8: Requirements
Let’s work out the functional requirements of a guessing game program.
· Store a random number (1-100)

· Give player instructions

· Store the player’s guess

· Check player’s guess
Possible outputs are:
· Guess was correct

· Guess was incorrect

· Guess was too low

· Guess was too high

· We need to allow the player a number of guesses

· Allow the player to play another game

· Keep score
Slide 9 – 13: Design an algorithm

Flowchart Conventions

Let’s start building our algorithm. I’ll be using common flowchart conventions.

· Rounded rectangle, start / end

· Rectangle, process or instruction

· Diamond, a decision

· Parallelogram, input or output

· Line with an arrow, indicates order of operation
Building the flowchart
We begin with the “start” block then we create and store a random number. We give instructions to our player and ask the player to enter a guess (input). If the guess was correct, true, then the output would be “The guess was correct”. Then we add an “end” block.
So far 5 of our requirements have been met but the program isn’t particularly useful. We need to give feedback if the guess was incorrect as well as correct. We add a new branch, false, the output will be “The guess was incorrect”, end.
Algorithm, too high or too low feedback

Now we change the algorithm to give feedback if the guess was too high or too low. From before, false, “the guess was incorrect”. We add another decision block. “Was the guess too low?” If true then the output would be, “Your guess was too low”. If false then output, “your guess was too high”, end.
Adding a repeating loop

We have now addressed 8 of our requirements but program will only run once. Next step is to allow the player 7 guesses. To do this we use iteration, a loop or a repeating section. First add another storing variable to record the number of guesses and set it to zero.
We add another decision block and create a condition “While number of guesses is less than 7 continue”. Now we put the guess checking section inside the loop and on a correct guess the player will exit the loop.
We need to make sure we increment the “guesses” variable each time. If we don’t we will remain in the loop forever. If the player hasn’t guessed correctly in 7 tries they lose.
Slide 14: Review of the tutorial
In this video tutorial we covered.
· The links between designing an algorithm and the Digital Technologies curriculum

· We examined a common guessing game and defined a problem

· We then identified functional requirements and designed an algorithm to meet most of those requirements.
Slide 15: Algorithms Part B
The next video tutorial will address.
· Creating a “play again condition” and keeping score

· Representing the algorithm using English instructions
· Testing and tracing.

©VCAA

