Mathematics - Annotated student work samples

Level 9 - Measurement and geometry

Overview

Task name	When three sides work
Learning intention	To explore Pythagoras's theorem and the relationship between the sides of triangles and their lengths
Duration	30 minutes

Links to the Victorian Curriculum

These work samples are linked to Level 9 of the Mathematics curriculum.

Extract from achievement standard

Apply Pythagoras's theorem ... to solve problems involving ... lengths in right-angled triangles.

Relevant content description

- Investigate Pythagoras' Theorem and its application to solving simple problems involving rightangled triangles (VCMMG318)

Links to NAPLAN

Minimum standards - numeracy

Year 9: Classification and properties of shapes

Students can classify 2D shapes ... according to common properties including ... sides, perimeters, areas ...

Mathematics - Annotated student work samples

Student work samples - Constructing triangles

These work samples were created by students working at Level 9. Evidence of student achievement has been annotated.

Victorian Curriculum link

Investigate Pythagoras' Theorem and its application to solving simple problems involving right-angled triangles (VCMMG318)

Part 1

a. Construct a triangle with side lengths of 5,6 and 8 centimetres.

Part 1

a. Construct a triangle with side lengths of 5, 6 and 8 centimetres.

Mathematics - Annotated student work samples

b. Let p, q and r be three positive integers. Find a relation between p, q and r which means that these numbers could represent the lengths of the three sides of a triangle, for any kind of triangle.

b. Let p, q and r be three positive integers. Find a relation between p, q and r which means that these numbers could represent the lengths of the three sides of a triangle, for any kind of triangle.

$r+q>p$

Uses symbolic expressions including inequality to write a set of relations independent of the relative magnitudes
b. Let p, q and r be three positive integers. Find a relation between p, q and r which means that these numbers could represent the lengths of the three sides of a triangle, for any kind of triangle.

$$
\begin{aligned}
& \text { Let } r=\text { the hypotenuse } \\
& p \text { and } q \text { are the other two sidles } \\
& \text { you can work out the side length of } r \\
& \text { if you have pond } q \text { by using by that } \\
& \text { eq. } p=5, q=10 \\
& \text { Provides a specific example of } \\
& \text { the Pythagorean relation for } \\
& \text { right-angled triangles }
\end{aligned}
$$

Mathematics - Annotated student work samples

b. Let p, q and r be three positive integers. Find a relation between p, q and r which means that these numbers could represent the lengths of the three sides of a triangle, for any kind of triangle.

Mathematics - Annotated student work samples

Part 2

c. Construct a triangle with side lengths of 9,12 and 15 centimetres.

Identify the type of triangle that you have constructed.

$$
\begin{aligned}
& \text { acute angle } \\
& \text { triangle }
\end{aligned}
$$

Part 2

c. Construct a triangle with side lengths of 9, 12 and 15 centimetres.

Identify the type of triangle that you have constructed.

Mathematics - Annotated student work samples

Part 2

Identifies and verifies the triangle as a scaling of the $3,4,5$ Pythagorean triple

Identify the type of triangle that you have constructed.

Mathematics - Annotated student work samples

Part 2

c. Construct a triangle with side lengths of 9,12 and 15 centimetres.

Mathematics - Annotated student work samples

d. Find some other combinations of integer side lengths that can be used to construct the same type of triangle and explain why this is the case.

$$
3^{2}+4^{2}=5^{2} \text { we know that this }
$$

$\therefore(3 \times 2)^{2}+(4 \times 2)^{2}=(5 \times 2)^{2}$

$$
3^{2} \times 4+4^{2} \times 4=5^{2} \times 4
$$

this can then be factorised:

$$
\begin{aligned}
4\left(3^{2}+4^{2}\right) & =4\left(5^{2}\right) \\
3^{2}+4^{2} & =5^{2}
\end{aligned}
$$

\therefore we can multiply all sides by the same number, and still have a pythagoras triple:
$\times 2 \Rightarrow 6,8,10 \mathrm{~cm}$
Lists a set of triangles based on
$\times 4 \Rightarrow 12,16,20 \mathrm{~cm}$
scaling from a 3, 4, 5 triangle
$\times 5 \Rightarrow 15,20,25 \mathrm{~cm}$
$x 6 \Rightarrow 18,24,30 \mathrm{~cm}$
$\Rightarrow 18,24,30 \mathrm{~cm}$
etc. (every set of lengths of form $3 x, 4 x, 5 x$) \Rightarrow where x is any
positive value
Provides a general form
d. Find some other combinations of integer side lengths that can be used to construct the same type of triangle and explain why this is the case.

$$
\begin{aligned}
& 9^{2}+12^{2}=15^{2} \\
& 9,12,15 \text { are part of the } 3,4,5 \text { type of goy flag ocean } \\
& \begin{array}{l}
\text { triads } \\
\text { Identifies a set of similar right- } \\
\text { angled triangles based on } \\
\text { scaling from a 3, 4, } 5 \text { triangle }
\end{array} \\
& \begin{array}{l}
3,4,5 \\
6,8,10 \\
12,16,20 \\
15,20,25
\end{array} \\
& \text { etc similar triangles: }
\end{aligned}
$$

Mathematics - Annotated student work samples

Where to next for the teacher?

When the task on which these annotated student work samples is based has been used as a classroom activity, there is opportunity to gather data on student achievement to help inform further teaching.

An analysis of student responses, on an individual, group or whole class basis, can be used to develop and direct student learning with respect to the following content.

For students needing to review underpinning knowledge and skills at Level 8

- Develop the conditions for congruence of triangles (VCMMG292)
- Establish properties of quadrilaterals using congruent triangles and angle properties, and solve related numerical problems using reasoning (VCMMG293)

For students consolidating knowledge and skills at Level 9

- Apply trigonometry to solve right-angled triangle problems (VCMMG320)
- Use similarity to investigate the constancy of the sine, cosine and tangent ratios for a given angle in right-angled triangles (VCMMG319)

For students moving on to new knowledge and skills at Level 10

- Solve right-angled triangle problems including those involving direction and angles of elevation and depression (VCMMG346)

Resources

- Numeracy Learning Progressions, Victorian Curriculum and Assessment Authority (VCAA) The Numeracy Learning Progressions amplify, extend and build on the numeracy skills in the Victorian Curriculum F-10: Mathematics and support the application of numeracy learning within other learning areas.
- FUSE, Victorian Department of Education and Training (DET) - The FUSE website provides access to digital resources that support the implementation of the Victorian Curriculum F-10, including an extensive range of activities and other resources for Primary Mathematics and Secondary Mathematics.
- Mathematics Curriculum Companion, Victorian Department of Education and Training (DET)
- Aligned Australian Curriculum Resources (Mathematics), Australian Curriculum, Assessment and Reporting Authority (ACARA)

