Mathematics - Annotated student work samples

Level 9 - Number and algebra

Overview

Task name	This expression is the same as that expression when ...
Learning intention	To identify equivalent forms of simple algebraic equations
Duration	30 minutes

Links to the Victorian Curriculum

These work samples are linked to Level 9 of the Mathematics curriculum.

Extract from achievement standard

Students use the distributive law to expand algebraic expressions, including binomial expressions, and simplify a range of algebraic expressions.

Relevant content description

- Apply the distributive law to the expansion of algebraic expressions, including binomials, and collect like terms where appropriate (VCMNA306)

Links to NAPLAN

Minimum standards - numeracy

Year 9: Algebra, function and pattern - Equivalence

Students can establish equivalence between algebraic expressions. For example, students can generally:

- identify equivalent forms of simple algebraic expressions.

Mathematics - Annotated student work samples

Student work samples -
 Expressions (Questions a and b)

These work samples were created by students working at Level 9 . Evidence of student achievement has been annotated.

Victorian Curriculum link
Apply the distributive law to the expansion of algebraic expressions, including binomials, and collect like terms where appropriate (VCMNA306)

This expression is the same as that expression when ...

Introduction

This task involves the equivalence between expanded and factorised forms of simple algebraic expressions.

Students should be familiar with the use of the distributive rule for expansion of simple expressions with positive integer coefficients such as: $2(x+3)=2 x+6$ and $(x+3)=x^{2}+3 x$.

Sample 1

a. Find a positive integer value of c for which $x^{2}+8 x+c$ can be written as the product (multiplication) of two different linear expressions with positive integer coefficients.
 wow ln w work
because the two expressions are the same

b. Explain why this is the case for this value of c. expressions
$L=12$ because There are two different

Identifies $c=16$ and compares to distinct linear factors

Selects solution with two distinct linear factors

Mathematics - Annotated student work samples

Sample 2

a. Find a positive integer value of c for which $x^{2}+8 x+c$ can be written as the product (multiplication) of two different linear expressions with positive integer coefficients.

Expands pair of distinct factors with resulting $8 x$ term and constant term of 15
$=x^{2}+8 x+15$ Identifies $c=15$

$c=15$

b. Explain why this is the case for this value of c.

Sample 3

a. Find a positive integer value of c for which $x^{2}+8 x+c$ can be written as the product (multiplication) of two different linear expressions with positive integer coefficients.

Once you take out the common factor, which in this case is x, you can see that both x \& 8 are multiplied by x. Next you need to find out which numbers add to 8. In this situation there were multiple. There was; $6 \& 2,5 \& 3,4 \$ 4,7 d 1$ the l list goes
on.

Mathematics - Annotated student work samples

Sample 4

a. Find a positive integer value of c for which $x^{2}+8 x+c$ can be written as the product (multiplication) of two different linear expressions with positive integer coefficients.

b. Explain why this is the case for this value of c.

I
choose. this for the value of C C as 7 multiplied by this 7 plus 1 equate 2 so il works in problem. There are also other interges no ot
covid lave worked hent I chose lis one.

Sample 5

a. Find a positive integer value of c for which $x^{2}+8 x+c$ can be written as the product (multiplication) of two different linear expressions with positive integer

Expands to identify solutions with $8 x$ term coefficients

Lists four possible values for c including perfect square case
b. Explain why this is the case for this value of c.

$$
\begin{aligned}
(x+2) \times(x+6) & \geq x^{2}+2 x+6 x+12 \\
& \geq x^{2}+8 x+12
\end{aligned}>\begin{aligned}
& \text { Restates working for two } \\
& \text { selected solutions }
\end{aligned}
$$

Mathematics - Annotated student work samples

Student work samples Expressions (Questions c and d)

These work samples were created by students working at Level 9. Evidence of student achievement has been annotated.

Victorian Curriculum link

Apply the distributive law to the expansion of algebraic expressions, including
binomials, and collect like terms where appropriate (VCMNA306)

Sample 1

c. Find a positive integer value of c for which $x^{2}+8 x+c$ cannot be written as the product (multiplication) of two linear expressions with positive integer coefficients.

d. Explain why this is the case for this value of c.

Mathematics - Annotated student work samples

Sample 2

c. Find a positive integer value of c for which $x^{2}+8 x+c$ cannot be written as the product (multiplication) of two linear expressions with positive integer coefficients
 $x+$
d. Explain why this is the case for this value of c.

 does not equal 8 it equals $4 . \therefore$ it deon tit in the equation

Sample 3

c. Find a positive integer value of c for which $x^{2}+8 x+c$ cannot be written as the product (multiplication) of two linear expressions with positive integer coefficients

d. Explain why this is the case for this value of c .

Notes factors of 10 do not sum to 8 , the coefficient of x The factors of to doesn not sum up to 8, which is the co-efticient of x

Mathematics - Annotated student work samples
Student work samples Expressions (Questions e and f)

These work samples were created by students working at Level 9. Evidence of student achievement has been annotated.

Victorian Curriculum link
Apply the distributive law to the expansion of algebraic expressions, including binomials, and collect like terms where appropriate (VCMNA306)

Sample 1
e. Find the positive integer value of c for which $x^{2}+8 x+c$ can be written as the product (multiplication) of two identical linear expressions with positive integer coefficients.

$$
\begin{array}{ll}
C=16 \longleftarrow+16 \\
x^{2}+8 x+16 \\
\left(x^{2}+4 x+4 x+16\right. \\
x(x+4) & \text { identifies } c=16 \text { as a solution } \\
(x+4)(x+4) & \begin{array}{l}
\text { Factorises to obtain two } \\
\text { identical linear factors of } x+4
\end{array} \\
& \text { Writes as a perfect square }
\end{array}
$$

f. Explain why this is the case for this value of c.

$C=16$ | 10
identical

States the linear expressions are identical when $c=16$
are
expressions.

Mathematics - Annotated student work samples

Sample 2

e. Find the positive integer value of c for which $x^{2}+8 x+c$ can be written as the product (multiplication) of two identical linear expressions with positive integer coefficients.

Attempts two combinations of linear expressions that do not work

$2 x^{2}+5 x+2$

f. Explain why this is the case for this value of c.

Mathematics - Annotated student work samples

Sample 3

e. Find the positive integer value of c for which $x^{2}+8 x+c$ can be written as the product (multiplication) of two identical linear expressions with positive integer coefficients

f. Explain why this is the case for this value of c.

```
The value of C had to be a perfect squove becavae the
two lineas equationt had to be identicat,
in this case it wat \((x+4)(x+4)\) becasse they are both identical.
and \(4+4=8\)
\begin{tabular}{l} 
Explains that perfect square \\
form requires identical linear \\
expressions
\end{tabular}
```


Mathematics - Annotated student work samples

Sample 4

e. Find the positive integer value of c for which $x^{2}+8 x+c$ can be written as the product (multiplication) of two identical linear expressions with positive integer coefficients

$$
\begin{array}{ll}
(x+4) \times(x+4) & \begin{array}{l}
\text { Expands pair of identical linear } \\
\text { expressions }
\end{array} \\
x^{2}+8 x+16 & \text { States the value of } c
\end{array}
$$

e. Explain why this is the case for this value of c.

Mathematics - Annotated student work samples

Where to next for the teacher?

When the task on which these annotated student work samples is based has been used as a classroom activity, there is opportunity to gather data on student achievement to help inform further teaching.

An analysis of student responses, on an individual, group or whole class basis, can be used to develop and direct student learning with respect to the following content.

For students needing to review underpinning knowledge and skills at Level 8

- Extend and apply the distributive law to the expansion of algebraic expressions (VCMNA279)

For students consolidating knowledge and skills at Level 9

- Apply set structures to solve real-world problems (VCMNA307)

For students moving on to new knowledge and skills at Level 10

- Simplify algebraic products and quotients using index laws (VCMNA330)
- Substitute values into formulas to determine an unknown and re-arrange formulas to solve for a particular term (VCMNA333)

Resources

- Mathematics Sample Programs, Victorian Curriculum and Assessment Authority (VCAA) - This set of sample programs covering the Victorian Curriculum Mathematics: F-10 were developed as examples to illustrate how the Mathematics curriculum could be organised into yearly teaching and learning programs.
- Numeracy Learning Progressions, Victorian Curriculum and Assessment Authority (VCAA) The Numeracy Learning Progressions amplify, extend and build on the numeracy skills in the Victorian Curriculum Mathematics F-10 and support the application of numeracy learning within other learning areas.
- FUSE, Victorian Department of Education and Training (DET) - The FUSE website provides access to digital resources that support the implementation of the Victorian Curriculum F-10, including an extensive range of activities and other resources for Primary Mathematics and Secondary Mathematics.
- Mathematics Teaching Toolkit, Victorian Department of Education and Training (DET)
- Mathematics Curriculum Companion, Victorian Department of Education and Training (DET)
- Victorian Numeracy Portal, Victorian Department of Education and Training (DET)
- Aligned Australian Curriculum Resources (Mathematics), Australian Curriculum, Assessment and Reporting Authority (ACARA)

