VICTORIAN CURRICULUM AND ASSESSMENT AUTHORITY
 Victorian Certificate of Education 2013

STUDENT NUMBER
Figures
Words

\square

CHEMISTRY

Written examination
Tuesday 12 November 2013
Reading time: 9.00 am to 9.15 am (15 minutes)
Writing time: 9.15 am to $\mathbf{1 1 . 4 5} \mathrm{am}$ (2 hours $\mathbf{3 0}$ minutes)

QUESTION AND ANSWER BOOK

Structure of book

Section	Number of questions	Number of questions to be answered	Number of marks
A	30	30	30
B	11	11	90

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers and one scientific calculator.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or white out liquid/tape.

Materials supplied

- Question and answer book of 32 pages.
- A data book.
- Answer sheet for multiple-choice questions.

Instructions

- Write your student number in the space provided above on this page.
- Check that your name and student number as printed on your answer sheet for multiple-choice questions are correct, and sign your name in the space provided to verify this.
- All written responses must be in English.

At the end of the examination

- Place the answer sheet for multiple-choice questions inside the front cover of this book.
- You may keep the data book.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

SECTION A - Multiple-choice questions

Instructions for Section A

Answer all questions in pencil on the answer sheet provided for multiple-choice questions.
Choose the response that is correct or that best answers the question.
A correct answer scores 1, an incorrect answer scores 0 .
Marks will not be deducted for incorrect answers.
No marks will be given if more than one answer is completed for any question.

Question 1

Consider the following.
'Calculate the pressure exerted by 6.9 g of argon in a 0.07500 L container at $11.5^{\circ} \mathrm{C} . '$
The number of significant figures that should be expressed in the answer is
A. 2
B. 3
C. 4
D. 5

Question 2

The change in pH as a 0.10 M solution of a strong base is added to 20.0 mL of a 0.10 M solution of a weak acid is shown below.

Refer to the acid-base indicator data provided in the data book and identify the indicator that would be least suitable to detect the end point of this neutralisation.
A. phenol red
B. thymol blue
C. phenolphthalein
D. bromothymol blue

Question 3

In a titration, a 25.00 mL titre of 1.00 M hydrochloric acid neutralised a 20.00 mL aliquot of sodium hydroxide solution.
If, in repeating the titration, a student failed to rinse one of the pieces of glassware with the appropriate solution, the titre would be
A. equal to 25.00 mL if water was left in the titration flask after final rinsing.
B. less than 25.00 mL if the final rinsing of the burette is with water rather than the acid.
C. greater than 25.00 mL if the final rinsing of the 20.00 mL pipette is with water rather than the base.
D. greater than 25.00 mL if the titration flask had been rinsed with the acid prior to the addition of the aliquot.

Question 4

In volumetric analysis, the properties of the reactants, as well as the nature of the reaction between them, will determine if a back titration is to be used.
Consider the following cases.
I The substance being analysed is volatile.
II The substance being analysed is insoluble in water but is soluble in dilute acid.
III The end point of the reaction is difficult to detect.
In which cases would a back titration be more suitable than a simple forward titration?
A. I and II only
B. I and III only
C. II and III only
D. I, II and III

Question 5

Two identical flasks, A and B, contain, respectively, 5.0 g of N_{2} gas and 14.4 g of an unknown gas.
The gases in both flasks are at standard laboratory conditions (SLC).
The gas in flask B is
A. H_{2}
B. SO_{2}
C. HBr
D. $\mathrm{C}_{4} \mathrm{H}_{10}$

Question 6

Which one of the following reactions is a redox reaction?
A. $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{~s})$
B. $\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{PbCl}_{2}(\mathrm{~s})$
C. $\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
D. $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+\mathrm{HCOOH}(\mathrm{l}) \rightarrow \mathrm{HCOOCH}_{3}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Question 7

The thin layer chromatography plate shown below has a polar stationary phase. It was developed using hexane as the solvent.

Which sample has the most polar molecules?
A. sample A
B. sample B
C. sample C
D. There is not enough information to determine which sample has the most polar molecules.

Question 8

A forensic chemist tests mud from a crime scene to determine whether the mud contains zinc.
Which one of the following analytical techniques would be best suited to this task?
A. infrared spectroscopy
B. thin layer chromatography
C. atomic absorption spectroscopy
D. nuclear magnetic resonance spectroscopy

Question 9

The systematic IUPAC name for the molecule shown above is
A. ethyl ethanoate.
B. ethyl propanoate.
C. propyl ethanoate.
D. methyl propanoate.

Question 10

The systematic IUPAC name for the product of the above chemical reaction is
A. 1-chlorobutane.
B. 2-chlorobutane.
C. 3-chlorobutane.
D. 4-chlorobutane.

Question 11

Australian jellyfish venom is a mixture of proteins for which there is no antivenom. Jellyfish stings are painful, can leave scars and, in some circumstances, can cause death.
Some commercially available remedies disrupt ionic interactions between the side chains on amino acid residues.
These products most likely disrupt the protein's
A. primary structure only.
B. secondary structure only.
C. tertiary structure only.
D. primary, secondary and tertiary structures.

Question 12

Which figure best represents the bonding between adenine and thymine in the structure of DNA?
A.

C.

B.

D.

Question 13

The reaction pathway for the synthesis of paracetamol, a mild painkiller, is provided below.

Which step or steps in this synthesis involve(s) a reduction reaction?
A. step I only
B. step II only
C. steps I and III only
D. steps I, II and III
$\mathrm{Cu}(\mathrm{s})+4 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{NO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Question 14

Which one of the following will not increase the rate of the above reaction?
A. decreasing the size of the solid copper particles
B. increasing the temperature of HNO_{3} by $20^{\circ} \mathrm{C}$
C. increasing the concentration of HNO_{3}
D. allowing NO_{2} gas to escape

Question 15

In the above reaction, the number of successful collisions per second is a small fraction of the total number of collisions.

The major reason for this is that
A. the nitric acid is ionised in solution.
B. some reactant particles have too much kinetic energy.
C. the kinetic energy of the particles is reduced when they collide with the container's walls.
D. not all reactant particles have the minimum kinetic energy required to initiate the reaction.

Question 16

$$
\begin{array}{ll}
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}=-571.6 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

Given the information above, what is the enthalpy change for the following reaction?

$$
\mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g})
$$

A. $\quad-965.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $\quad-107.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $+178.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $+679.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$

$$
2 \mathrm{NOCl}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H} \text { is positive. }
$$

Question 17

The equilibrium expression for this reaction is
A. $\frac{2[\mathrm{NO}]\left[\mathrm{Cl}_{2}\right]}{2[\mathrm{NOCl}]}$
B. $\frac{\left[\mathrm{NO}^{2}\left[\mathrm{Cl}_{2}\right]\right.}{[\mathrm{NOCl}]^{2}}$
C. $\frac{2[\mathrm{NOCl}]}{2[\mathrm{NO}]\left[\mathrm{Cl}_{2}\right]}$
D. $\frac{[\mathrm{NOCl}]^{2}}{[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]}$

Question 18

A concentration-time graph for this system is shown below.

What event occurred at time t to cause the change in equilibrium concentrations?
A. The pressure was decreased at a constant temperature.
B. The temperature was increased at a constant volume.
C. A catalyst was added at a constant temperature and volume.
D. Additional NO gas was added at a constant volume and temperature.

Question 19

Which one of the following solutions has the highest pH ?
A. 0.01 M HCOOH
B. 1.0 M HCOOH
C. $0.01 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$
D. $1.0 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$

Question 20

The ionisation of ethanoic acid can be represented by the equation

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

The percentage ionisation of ethanoic acid is greatest in a
A. $50 \mathrm{~mL} 1.0 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ solution.
B. $50 \mathrm{~mL} 0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ solution.
C. $100 \mathrm{~mL} 0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ solution.
D. $100 \mathrm{~mL} 0.01 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ solution.

Question 21

Phosphoric acid is present in cola-flavoured soft drinks and has been linked to decreased bone density. It is a triprotic acid with the following K_{a} values at $25^{\circ} \mathrm{C}$.

$$
\begin{array}{ll}
\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq}) & K_{\mathrm{a} 1}=7.25 \times 10^{-3} \\
\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HPO}_{4}^{2-}(\mathrm{aq}) & K_{\mathrm{a} 2}=6.31 \times 10^{-8} \\
\mathrm{HPO}_{4}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{PO}_{4}^{3-}(\mathrm{aq}) & K_{\mathrm{a} 3}=3.98 \times 10^{-13}
\end{array}
$$

To determine the approximate pH of a 0.1 M phosphoric acid solution, a student should use the value of
A. $K_{\mathrm{a} 1}$ only
B. $K_{\mathrm{a} 3}$ only
C. $K_{\mathrm{a} 1} \times K_{\mathrm{a} 3}$ only
D. $K_{\mathrm{a} 1} \times K_{\mathrm{a} 2} \times K_{\mathrm{a} 3}$

Question 22

Which of the following alternatives lists only renewable energy resources?
A. coal, diesel, ethanol
B. coal, crude oil, uranium
C. ethanol, methane, diesel
D. crude oil, natural gas, ethanol

Question 23

What is the enthalpy change when 40 g of NaOH is dissolved in one litre of water, given that the temperature of the solution increased by $10.6^{\circ} \mathrm{C}$?
A. $\quad-0.44 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $\quad-4.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $\quad-44 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $-440 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Question 24

Three beakers, each containing an iron strip and a 1.0 M solution of a metal salt, were set up as follows.

A reaction will occur in beaker(s)
A. I and II only.
B. I and III only.
C. II and III only.
D. III only.

Question 25

A student constructs the following galvanic cell.

The student predicts that the following overall reaction will occur.

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})
$$

However, no reaction is observed.
This is most likely because
A. the difference between the E° values is too small for a reaction to occur.
B. hydrogen peroxide will oxidise water in preference to itself.
C. the student did not construct standard half-cells.
D. the rate of the reaction is extremely slow.

Use the following information to answer Questions 26 and 27.
Four standard galvanic cells are set up as indicated below.
cell I $\quad \mathrm{a}_{2} / \mathrm{Br}^{-}$standard half-cell connected to a $\mathrm{Cu}^{2+} / \mathrm{Cu}$ standard half-cell
cell II an $\mathrm{Sn}^{2+} / \mathrm{Sn}$ standard half-cell connected to a $\mathrm{Zn}^{2+} / \mathrm{Zn}$ standard half-cell
cell III \quad a $\mathrm{Br}_{2} / \mathrm{Br}^{-}$standard half-cell connected to an $\mathrm{I}_{2} / \mathrm{I}^{-}$standard half-cell
cell IV $\quad \mathrm{a} \mathrm{Co}^{2+} / \mathrm{Co}$ standard half-cell connected to an $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ standard half-cell

Question 26

Which cell would be expected to develop the largest potential difference?
A. I
B. II
C. III
D. IV

Question 27

The reaction occurring at the cathode as cell IV is discharged is
A. $\mathrm{Fe}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-}$
B. $\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$
C. $\mathrm{Co}(\mathrm{s}) \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}$
D. $\mathrm{Co}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Co}(\mathrm{s})$

Question 28

The main reason an aqueous solution of potassium nitrate, KNO_{3}, is used in salt bridges is

A.	$\mathrm{K}^{+}(\mathrm{aq})$ is a strong oxidant.	$\mathrm{NO}_{3}^{-}(\mathrm{aq})$ is a weak reductant.
B.	$\mathrm{K}^{+}(\mathrm{aq})$ is a weak reductant.	$\mathrm{NO}_{3}^{-}(\mathrm{aq})$ is a strong oxidant.
C.	$\mathrm{K}^{+}(\mathrm{aq})$ salts are soluble in water.	$\mathrm{NO}_{3}^{-}(\mathrm{aq})$ salts are soluble in water.
D.	$\mathrm{K}^{+}(\mathrm{aq})$ ions will migrate to the anode half-cell.	$\mathrm{NO}_{3}^{-}(\mathrm{aq})$ ions will migrate to the cathode half-cell.

Question 29

The lead acid battery used in cars consists of secondary galvanic cells.
The following equations relate to the lead acid battery.

$$
\begin{array}{ll}
\mathrm{PbSO}_{4}(\mathrm{~s})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Pb}(\mathrm{~s})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) & E^{\circ}=-0.36 \mathrm{~V} \\
\mathrm{PbO}_{2}(\mathrm{~s})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{PbSO}_{4}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & E^{\circ}=1.69 \mathrm{~V}
\end{array}
$$

When an external power source is used to recharge a flat lead acid battery
A. the concentration of sulfuric acid decreases.
B. PbSO_{4} is both oxidised and reduced.
C. the mass of metallic lead decreases.
D. PbO_{2} is oxidised to Pb .

Question 30

A student prepares 1.0 M aqueous solutions of $\mathrm{AgNO}_{3}, \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}$ and KNO_{3}.
Equal volumes of each solution are placed in separate beakers, identical platinum electrodes are placed in each beaker and each solution undergoes electrolysis with the same current applied for 5.0 minutes under SLC. Each cathode is then dried and weighed to determine mass change.
Assume that the concentrations of the solutions have decreased only slightly.
In order of increasing mass, the metals deposited on the three cathodes are likely to be
A. potassium, silver, iron.
B. silver, iron, potassium.
C. iron, potassium, silver.
D. potassium, iron, silver.

SECTION B

Instructions for Section B

Answer all questions in the spaces provided. Write using black or blue pen.
To obtain full marks for your responses you should

- give simplified answers with an appropriate number of significant figures to all numerical questions; unsimplified answers will not be given full marks.
- show all working in your answers to numerical questions. No marks will be given for an incorrect answer unless it is accompanied by details of the working.
- make sure chemical equations are balanced and that the formulas for individual substances include an indication of state; for example, $\mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{NaCl}(\mathrm{s})$

Question 1 (2 marks)

High-performance liquid chromatography is used to determine the amount of caffeine in a sample of a soft drink. The chromatogram below shows the detector response when a standard solution of caffeine with a concentration of $200 \mathrm{mg} \mathrm{L}^{-1}$ is measured using the instrument.

a. What is the retention time of caffeine in this experiment?

1 mark

1 mark

Question 2 (4 marks)
The strength of the eggshell of birds is determined by the calcium carbonate, CaCO_{3}, content of the eggshell. The percentage of calcium carbonate in the eggshell can be determined by gravimetric analysis.
0.412 g of clean, dry eggshell was completely dissolved in a minimum volume of dilute hydrochloric acid.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

An excess of a basic solution of ammonium oxalate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4}$, was then added to form crystals of calcium oxalate monohydrate, $\mathrm{CaC}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$.
The suspension was filtered and the crystals were then dried to constant mass.
0.523 g of $\mathrm{CaC}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ was collected.
a. Write a balanced equation for the formation of the calcium oxalate monohydrate precipitate.
b. Determine the percentage, by mass, of calcium carbonate in the eggshell.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 3 (7 marks)
Spider webs are very strong and elastic. Spider web silk is a protein that mainly consists of glycine and alanine residues.
a. Assuming that these amino acid residues alternate in a spider web, draw a section of the spider web protein that contains at least three amino acid residues.

2 marks
b. What is the name of the bond between each amino acid residue?
c. What type of polymerisation reaction occurs in the formation of spider web silk?

1 mark

Glycine forms an ion at a pH of 6 that has both a positive and negative charge.
d. Draw the structure of a glycine ion at a pH of less than 4.

1 mark
e. Describe the bonds that contribute to the spiral secondary structure of this protein.

Question 4 (14 marks)
The industrial production of hydrogen involves the following two reactions.

$$
\begin{array}{lll}
\text { reaction I } & \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \rightleftharpoons \mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
\end{array} \quad \Delta \mathrm{H}=+206 \mathrm{~kJ} \mathrm{~mol}^{-1} .
$$

a. i. Write 'increase', 'decrease' or 'no change' in the table below to identify the expected effect of each change to reaction I and reaction II on the equilibrium yield of hydrogen.

Change to reaction I and reaction II	Effect of the change on the hydrogen yield in reaction I	Effect of the change on the hydrogen yield in reaction II
addition of steam at a constant volume and temperature		
increase in temperature at a constant volume		
addition of a suitable catalyst at a constant volume and temperature		

ii. Explain the effect of decreasing the volume, at constant temperature, on the hydrogen equilibrium yield in each reaction.
reaction I
\qquad
\qquad
\qquad
\qquad
reaction II
\qquad
\qquad
\qquad
\qquad
iii. What is the effect of an increase in temperature at constant volume on the rate of hydrogen production in each reaction?
reaction I
\qquad
\qquad
reaction II
\qquad
\qquad

The reaction between hydrogen and oxygen is the basis of energy production in a number of fuel cells.

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}=-571.6 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

b. An alkaline electrolyte is used in a particular hydrogen/oxygen fuel cell.

Write a balanced half-equation for the reaction occurring at the
i. cathode
\qquad
ii. anode.
\qquad
c. What is the maximum voltage predicted for one alkaline hydrogen/oxygen fuel cell under standard conditions?
\qquad
Much of the hydrogen used in fuel cells is produced from methane.

$$
\begin{aligned}
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \rightleftharpoons \mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \\
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
\end{aligned}
$$

d. Explain why methane generated by biomass is a renewable fuel while methane derived from fossil fuels is not.

Question 5 (10 marks)
A 20.00 mL aliquot of $0.200 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ (ethanoic acid) is titrated with 0.150 M NaOH .
The equation for the reaction between the ethanoic acid and NaOH solution is represented as

$$
\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})
$$

a. What volume of the NaOH solution is required to completely react with the ethanoic acid?
\qquad
\qquad
\qquad
\qquad
b. Define the terms 'equivalence point' and 'end point'.
\qquad
\qquad
\qquad
\qquad
c. Ethanoic acid is a weak acid.
i. Write an expression for the acidity constant of ethanoic acid.
ii. Calculate the pH of the 0.200 M ethanoic acid solution before any NaOH solution has been added. Assume that the equilibrium concentration of the ethanoic acid is 0.200 M .
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
d. Consider the point in the titration where the volume of NaOH added is exactly half that required for complete neutralisation.
i. Tick (\checkmark) the box next to the statement that best describes the relative concentrations of ethanoic acid and ethanoate ions at this point.

The concentration of ethanoic acid is less than the concentration of ethanoate ions.The concentration of ethanoic acid is equal to the concentration of ethanoate ions.The concentration of ethanoic acid is greater than the concentration of ethanoate ions.
ii. What is the relationship between the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$and K_{a} at this point?

1 mark

Question 6 (7 marks)

The reaction pathway below represents the synthesis of compound C.

a. Identify reagent X .
b. In the appropriate boxes above, write the semi-structural formulas for compounds A, B and C .
c. Give the systematic IUPAC names for compounds A and B.
compound A \qquad
compound B \qquad
d. Sketch the energy profile for the complete combustion of compound C using the axis below, labelling the energy of the reactants, the products and the activation energy.

Question 7 (14 marks)

An electrolytic process known as electrorefining is the final stage in producing highly purified copper. In a small-scale trial, a lump of impure copper is used as one electrode and a small plate of pure copper is used as the other electrode. The electrolyte is a mixture of aqueous sulfuric acid and copper sulfate.

a. Indicate in the box labelled 'polarity' on the diagram above, the polarity of the impure copper electrode.

In a trial experiment, the electrodes were weighed before and after electrolysis.
The results are provided in the following table.

	Mass of lump of impure copper	Mass of pure copper
before electrolysis	10.30 kg	1.55 kg
after electrolysis	0.855 kg	9.80 kg

b. On the basis of these results

- calculate a percentage purity of the lump of impure copper
\qquad
\qquad
\qquad
\qquad
- indicate one factor that may affect the accuracy of these results.
\qquad
\qquad
c. Conditions in the electrolytic cell shown in the diagram are carefully controlled to ensure a high degree of copper purity and electrical efficiency.
Use the mass of pure copper deposited that is given in the table in part a. to determine the time, in days, taken for this electrolysis reaction to be completed. Assume the current was a constant 24 A .

Lumps of impure copper typically contain impurities such as silver, gold, cobalt, nickel and zinc. Cobalt, nickel and zinc are oxidised from the copper lump and exist as ions in the electrolyte. Silver and gold are not oxidised and form part of an insoluble sludge at the base of the cell.
d. Why is it important that silver and gold are not present as cations in the electrolyte?

Chemists suspected that an impure copper lump contained a significant amount of cobalt. Cobalt would be oxidised to Co^{2+} ions that would remain in the electrolyte solution. The spectrogram below gives the results of analysis of the solution. The two ions absorb at distinctly different wavelengths.

e. i. Which analytical technique was used to perform this analysis?

A calibration graph was constructed using $\mathrm{Co}^{2+}(\mathrm{aq})$ solutions of known concentrations.
ii. What wavelength would you select to construct this curve?
iii. $\quad \mathrm{A} \mathrm{Co}^{2+}(\mathrm{aq})$ solution of unknown concentration registered an absorbance reading of 0.350 .

Determine the concentration of Co^{2+} ions in this solution.

Question 8 (10 marks)
a. In an experiment, 5.85 g of ethanol was ignited with 14.2 g of oxygen.
i. Write an equation for the complete combustion of ethanol.
\qquad
\qquad
ii. Which reagent is in excess? Calculate the amount, in moles, of the reagent identified as being in excess.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Ethanol for use as a biofuel can be produced from the fermentation of monosaccharides, such as glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, which is derived from polysaccharides found in plants.
b. Write an equation for the fermentation reaction of glucose.

Genetically modified yeast is used to convert xylose, $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}$, another monosaccharide found in plant fibres, to ethanol.

$$
3 \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}(\mathrm{aq}) \rightarrow 5 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+5 \mathrm{CO}_{2}(\mathrm{~g})
$$

c. In a trial, 1.00 kg of pure xylose is completely converted to ethanol and carbon dioxide.
i. Calculate the volume, in mL , of ethanol that is produced.

Note: The density of ethanol is $0.785 \mathrm{~g} \mathrm{~mL}^{-1}$. 3 marks
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
ii. Determine the volume of carbon dioxide gas at $20.0^{\circ} \mathrm{C}$ and 750.0 mm pressure produced by the xylose.

Question 9 (7 marks)

An unknown organic compound, molecular formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$, was presented to a spectroscopy laboratory for identification. A mass spectrum, infrared spectrum, and both ${ }^{1} \mathrm{H}$ NMR (proton NMR) and ${ }^{13} \mathrm{C}$ NMR spectra were produced. These are shown on the opposite page.
The analytical chemist identified the compound as ethyl ethanoate.
A report was submitted to justify the interpretation of the spectra. The chemist's report indicating information about the structure provided by the ${ }^{13} \mathrm{C}$ NMR spectrum has been completed for you.
a. Complete the rest of the report by identifying one piece of information from each spectrum that can be used to identify the compound. Indicate how the interpretation of this information justifies the chemist's analysis.

Spectroscopic technique	Information provided
${ }^{13} \mathrm{C}$ NMR spectrum	The four signals in the ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{spectrum} \mathrm{indicate} \mathrm{four} \mathrm{different} \mathrm{carbon}_{\text {environments. } \mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3} \text { has four different carbon environments. }}$ mass spectrum infrared spectrum

b. Another compound has the same molecular formula as ethyl ethanoate. However, the carbon ${ }^{13} \mathrm{C}$ NMR spectrum of this compound shows only three signals.
Draw a possible structure of this compound.

Source: National Institute of Advanced Industrial Science and Technology; http://sdbs.riodb.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi

Question 10 (8 marks)

Olive oil, which has been part of the human diet for thousands of years, is derived from the fruit of the olive tree.
The main fatty acid that makes up olive oil is oleic acid, $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{COOH}$.
The triglyceride formed from three oleic acid molecules is glycerol trioleate, $\mathrm{C}_{57} \mathrm{H}_{104} \mathrm{O}_{6}$. The molar mass of glycerol trioleate is $884 \mathrm{~g} \mathrm{~mol}^{-1}$.
a. i. An incomplete semi-structural formula of glycerol trioleate is provided below.

Complete the semi-structural formula of glycerol trioleate.

ii. Explain why oleic acid is described as a mono-unsaturated fatty acid.
\qquad
b. i. $\quad 1.00 \mathrm{~g}$ of olive oil is burned in a bomb calorimeter with excess pure oxygen.

The calibration factor of the calorimeter is $9112 \mathrm{~J}^{\circ} \mathrm{C}^{-1}$. The burning of the olive oil increased the temperature in the bomb calorimeter from $20.0^{\circ} \mathrm{C}$ to $22.4^{\circ} \mathrm{C}$.
Calculate the heat released by 1.00 g of olive oil.
\qquad
\qquad
\qquad
\qquad
ii. Assuming the only constituent of olive oil is glycerol trioleate, write a combustion reaction for this molecule.
\qquad
\qquad
iii. Determine the $\Delta \mathrm{H}$ for the reaction in part b.ii.
\qquad
\qquad
\qquad

Question 11 (7 marks)

The following is a student's summary of catalysts. It contains some correct and incorrect statements.
a. A catalyst increases the rate of a reaction.
b. All catalysts are solids.
c. The mass of a catalyst is the same before and after the reaction.
d. A catalyst lowers the enthalpy change of a reaction, enabling more particles to have sufficient energy to successfully react.
e. A catalyst increases the value of the equilibrium constant, thus favouring the extent of the forward reaction, resulting in a greater yield of product.
f. All catalysts align the reactant particles in an orientation that is favourable for a reaction to occur.
g. The effectiveness of a metal catalyst is not dependent upon its surface area.
h. Enzymes are biological catalysts that catalyse a specific biochemical reaction once only.
i. The effectiveness of an enzyme is independent of temperature.
a. Identify two correct statements.
b. Evaluate the student's summary by identifying three incorrect statements. In each case, explain why it is incorrect.
\qquad

CHEMISTRY

 Written examination

 Written examination}

Tuesday 12 November 2013
Reading time: 9.00 am to 9.15 am (15 minutes)
Writing time: 9.15 am to 11.45 am (2 hours 30 minutes)

DATA BOOK

Directions to students

- A question and answer book is provided with this data book.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Table of contents

page

1. Periodic table of the elements 3
2. The electrochemical series 4
3. Physical constants 5
4. SI prefixes, their symbols and values 5
5. ${ }^{1} \mathrm{H}$ NMR data 5-6
6. ${ }^{13} \mathrm{C}$ NMR data 7
7. Infrared absorption data 7
8. 2 -amino acids (α-amino acids) 8-9
9. Formulas of some fatty acids 10
10. Structural formulas of some important biomolecules 10
11. Acid-base indicators 11
12. Acidity constants, K_{a}, of some weak acids at $25^{\circ} \mathrm{C}$ 11
13. Values of molar enthalpy of combustion of some common fuels at 298 K and 101.3 kPa 11
14. Periodic table of the elements

2. The electrochemical series

	E° in volt
$\mathrm{F}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{~F}^{-}(\mathrm{aq})$	+2.87
$\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.77
$\mathrm{Au}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{Au}(\mathrm{s})$	+1.68
$\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Cl}^{-}(\mathrm{aq})$	+1.36
$\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(1)$	+1.23
$\mathrm{Br}_{2}(\mathrm{l})+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Br}^{-}(\mathrm{aq})$	+1.09
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{Ag}(\mathrm{s})$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$	+0.68
$\mathrm{I}_{2}(\mathrm{~s})+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{I}^{-}(\mathrm{aq})$	+0.54
$\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+4 \mathrm{e}^{-} \rightleftharpoons 4 \mathrm{OH}^{-}(\mathrm{aq})$	+0.40
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Cu}(\mathrm{s})$	+0.34
$\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Sn}^{2+}(\mathrm{aq})$	+0.15
$\mathrm{S}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$	+0.14
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})$	0.00
$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Pb}(\mathrm{s})$	-0.13
$\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Sn}(\mathrm{s})$	-0.14
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Ni}(\mathrm{s})$	-0.23
$\mathrm{Co}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Co}(\mathrm{s})$	-0.28
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}(\mathrm{s})$	-0.44
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Zn}(\mathrm{s})$	-0.76
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq})$	-0.83
$\mathrm{Mn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Mn}(\mathrm{s})$	-1.03
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightleftharpoons \mathrm{Al}(\mathrm{s})$	-1.67
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Mg}(\mathrm{s})$	-2.34
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{Na}(\mathrm{s})$	-2.71
$\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Ca}(\mathrm{s})$	-2.87
$\mathrm{K}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{K}(\mathrm{s})$	-2.93
$\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{Li}(\mathrm{s})$	-3.02

3. Physical constants

Avogadro's constant $\left(N_{\mathrm{A}}\right)=6.02 \times 10^{23} \mathrm{~mol}^{-1}$
Charge on one electron $=-1.60 \times 10^{-19} \mathrm{C}$
Faraday constant $(F)=96500 \mathrm{C} \mathrm{mol}^{-1}$
Gas constant $(R)=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Ionic product for water $\left(K_{\mathrm{w}}\right)=1.00 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$ at 298 K
(Self ionisation constant)
Molar volume $\left(\mathrm{V}_{\mathrm{m}}\right)$ of an ideal gas at $273 \mathrm{~K}, 101.3 \mathrm{kPa}(\mathrm{STP})=22.4 \mathrm{~L} \mathrm{~mol}^{-1}$
Molar volume $\left(\mathrm{V}_{\mathrm{m}}\right)$ of an ideal gas at $298 \mathrm{~K}, 101.3 \mathrm{kPa}(\mathrm{SLC})=24.5 \mathrm{~L} \mathrm{~mol}^{-1}$
Specific heat capacity (c) of water $=4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$
Density (d) of water at $25^{\circ} \mathrm{C}=1.00 \mathrm{~g} \mathrm{~mL}^{-1}$
$1 \mathrm{~atm}=101.3 \mathrm{kPa}=760 \mathrm{~mm} \mathrm{Hg}$
$0{ }^{\circ} \mathrm{C}=273 \mathrm{~K}$

4. SI prefixes, their symbols and values

SI prefix	Symbol	Value
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
deci	d	10^{-1}
centi	c	10^{-2}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}

5. ${ }^{1} \mathrm{H}$ NMR data

Typical proton shift values relative to TMS $=0$
These can differ slightly in different solvents. Where more than one proton environment is shown in the formula, the shift refers to the ones in bold letters.

Type of proton		Chemical shift (ppm)
$\mathrm{R}-\mathrm{CH}_{3}$		0.8-1.0
$\mathrm{R}-\mathrm{CH}_{2}-\mathrm{R}$		1.2-1.4
$\mathrm{RCH}=\mathrm{CH}-\mathrm{CH}_{3}$		1.6-1.9
$\mathrm{R}_{3}-\mathrm{CH}$		1.4-1.7
		2.0

Type of proton \quad Chemical shift (ppm)
6. ${ }^{13} \mathrm{C}$ NMR data

Type of carbon	Chemical shift (ppm)
$\mathrm{R}-\mathrm{CH}_{3}$	$8-25$
$\mathrm{R}-\mathrm{CH}_{2}-\mathrm{R}$	$20-45$
$\mathrm{R}_{3}-\mathrm{CH}$	$40-60$
$\mathrm{R}_{4}-\mathrm{C}$	$36-45$
$\mathrm{R}-\mathrm{CH}_{2}-\mathrm{X}$	$15-80$
$\mathrm{R}_{3} \mathrm{C}-\mathrm{NH}_{2}$	$35-70$
$\mathrm{R}-\mathrm{CH}_{2}-\mathrm{OH}$	$50-90$
$\mathrm{RC}=\mathrm{CR}^{2}$	$75-95$
$\mathrm{R}_{2} \mathrm{C}=\mathrm{CR}$	2
RCOOH	$110-150$

7. Infrared absorption data

Characteristic range for infrared absorption

Bond	Wave number $\left(\mathbf{c m}^{\mathbf{- 1}}\right)$
$\mathrm{C}-\mathrm{Cl}$	$700-800$
$\mathrm{C}-\mathrm{C}$	$750-1100$
$\mathrm{C}-\mathrm{O}$	$1000-1300$
$\mathrm{C}=\mathrm{C}$	$1610-1680$
$\mathrm{C}=\mathrm{O}$	$1670-1750$
$\mathrm{O}-\mathrm{H}$ (acids)	$2500-3300$
$\mathrm{C}-\mathrm{H}$	$2850-3300$
$\mathrm{O}-\mathrm{H}$ (alcohols)	$3200-3550$
$\mathrm{~N}-\mathrm{H}$ (primary amines)	$3350-3500$

8. 2-amino acids (α-amino acids)

Name	
alanine	
arginine	Ala
asparagine	Arg

glycine	Gly	$\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{COOH}$
histidine	His	

isoleucine
Ile

Name	Symbol	Structure
leucine	Leu	
lysine	Lys	
methionine		
phenylalanine		
proline	Pro	
serine	Ser	
threonine	Thr	
tryptophan	Trp	
tyrosine	Tyr	
valine	Val	

9. Formulas of some fatty acids

Name	Formula
Lauric	$\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{COOH}$
Myristic	$\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{COOH}$
Palmitic	$\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{COOH}$
Palmitoleic	$\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{COOH}$
Stearic	$\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COOH}$
Oleic	$\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{COOH}$
Linoleic	$\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{COOH}$
Linolenic	$\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{COOH}$
Arachidic	$\mathrm{C}_{19} \mathrm{H}_{39} \mathrm{COOH}$
Arachidonic	$\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{COOH}$

10. Structural formulas of some important biomolecules

adenine

guanine

cytosine

thymine

phosphate
11. Acid-base indicators

Name	pH range	Colour change		K_{a}
		Acid	Base	
Thymol blue	$1.2-2.8$	red	yellow	2×10^{-2}
Methyl orange	$3.1-4.4$	red	yellow	2×10^{-4}
Bromophenol blue	$3.0-4.6$	yellow	blue	6×10^{-5}
Methyl red	$4.2-6.3$	red	yellow	8×10^{-6}
Bromothymol blue	$6.0-7.6$	yellow	blue	1×10^{-7}
Phenol red	$6.8-8.4$	yellow	red	1×10^{-8}
Phenolphthalein	$8.3-10.0$	colourless	red	5×10^{-10}

12. Acidity constants, K_{a}, of some weak acids at $25^{\circ} \mathrm{C}$

Name	Formula	K_{a}
Ammonium ion	NH_{4}^{+}	5.6×10^{-10}
Benzoic	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$	6.4×10^{-5}
Boric	$\mathrm{H}_{3} \mathrm{BO}_{3}$	5.8×10^{-10}
Ethanoic	$\mathrm{CH}_{3} \mathrm{COOH}$	1.7×10^{-5}
Hydrocyanic	HCN	6.3×10^{-10}
Hydrofluoric	HF	7.6×10^{-4}
Hypobromous	HOBr	2.4×10^{-9}
Hypochlorous	HOCl	2.9×10^{-8}
Lactic	$\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$	1.4×10^{-4}
Methanoic	HCOOH^{2}	1.8×10^{-4}
Nitrous	HNO_{2}	7.2×10^{-4}
Propanoic	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$	1.3×10^{-5}

13. Values of molar enthalpy of combustion of some common fuels at 298 K and 101.3 kPa

Substance	Formula	State	$\Delta H_{\mathbf{c}}\left(\mathbf{k J ~ m o l}^{\mathbf{1}}\right)$
hydrogen	H_{2}	g	-286
carbon (graphite)	C	s	-394
methane	CH_{4}	g	-889
ethane	$\mathrm{C}_{2} \mathrm{H}_{6}$	g	-1557
propane	$\mathrm{C}_{3} \mathrm{H}_{8}$	g	-2217
butane	$\mathrm{C}_{4} \mathrm{H}_{10}$	g	-2874
pentane	$\mathrm{C}_{5} \mathrm{H}_{12}$	1	-3509
hexane	$\mathrm{C}_{6} \mathrm{H}_{14}$	1	-4158
octane	$\mathrm{C}_{8} \mathrm{H}_{18}$	1	-5464
ethene	$\mathrm{C}_{2} \mathrm{H}_{4}$	g	-1409
methanol	$\mathrm{CH}_{3} \mathrm{OH}$	1	-725
ethanol	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	1	-1364
1-propanol	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	1	-2016
2-propanol	$\mathrm{CH}_{3} \mathrm{CHOHCH}$	1	-2003
glucose	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	s	-2816

