

Victorian Certificate of Education 2023

SUPERVISOR TO ATTACH PROCESSING LABEL HERE
--

					Letter
STUDENT NUMBER					

SPECIALIST MATHEMATICS

Written examination 1

Friday 3 November 2023

Reading time: 9.00 am to 9.15 am (15 minutes) Writing time: 9.15 am to 10.15 am (1 hour)

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
10	10	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 11 pages
- Formula sheet
- Working space is provided throughout the book.

Instructions

- Write your **student number** in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.
- All written responses must be in English.

At the end of the examination

• You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Instructions

Answer all questions in the spaces provided.

Unless otherwise specified, an **exact** answer is required to a question.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Take the acceleration due to gravity to have magnitude g m s⁻², where g = 9.8

Victorian Certificate of Education 2023

SPECIALIST MATHEMATICS

Written examination 1

FORMULA SHEET

Instructions

This formula sheet is provided for your reference.

A question and answer book is provided with this formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Mensuration

area of a circle segment	$\frac{r^2}{2}(\theta - \sin(\theta))$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin\left(A\right)$
volume of a cone	$\frac{1}{3}\pi r^2 h$	sine rule	$\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$
volume of a pyramid	$\frac{1}{3}Ah$	cosine rule	$c^2 = a^2 + b^2 - 2ab\cos(C)$

Algebra, number and structure (complex numbers)

$z = x + iy = r(\cos(\theta) + i\sin(\theta)) = r\operatorname{cis}(\theta)$	$ z = \sqrt{x^2 + y^2} =$	= <i>r</i>
$-\pi < \operatorname{Arg}(z) \le \pi$	$z_1 z_2 = r_1 r_2 \operatorname{cis}(\theta)$	$\theta_1 + \theta_2$
$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$	de Moivre's theorem	$z^n = r^n \operatorname{cis}(n \theta)$

Data analysis, probability and statistics

for independent random variables	$E(aX_{1} + b) = a E(X_{1}) + b$ $E(a_{1}X_{1} + a_{2}X_{2} + \dots + a_{n}X_{n})$ $= a_{1}E(X_{1}) + a_{2}E(X_{2}) + \dots + a_{n}E(X_{n})$			
$X_1, X_2 \dots X_n$	$\operatorname{Var}(aX_1 + b) = a^2 \operatorname{Var}(X_1)$ $\operatorname{Var}(a_1 X_1 + a_2 X_2 + \dots + a_n X_n)$ $= a_1^2 \operatorname{Var}(X_1) + a_2^2 \operatorname{Var}(X_2) + \dots + a_n^2 \operatorname{Var}(X_n)$			
for independent identically distributed variables $X_1, X_2 \dots X_n$	$E(X_1 + X_2 + + X_n) = n\mu$			
	$\operatorname{Var}(X_1 + X_2 + \dots X_n) = n\sigma^2$			
approximate confidence interval for μ	$\left(\overline{x} - z \frac{s}{\sqrt{n}}, \overline{x} + z \frac{s}{\sqrt{n}}\right)$			
distribution of sample mean \bar{X}	mean	$\mathrm{E}\left(\overline{X}\right) = \mu$		
	variance	$\operatorname{Var}\left(\bar{X}\right) = \frac{\sigma^2}{n}$		

Calculus

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\frac{d}{dx}(e^{ax}) = ae^{ax}$$

$$\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$$

$$\frac{d}{dx}(\sin(ax)) = a\cos(ax)$$

$$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$$

$$\frac{d}{dx}(\tan(ax)) = a\sec^2(ax)$$

$$\frac{d}{dx}(\cot(ax)) = -a\csc^2(ax)$$

$$\frac{d}{dx}(\sec(ax)) = a\sec(ax)\tan(ax)$$

$$\frac{d}{dx}(\csc(ax)) = -a\csc(ax)\cot(ax)$$

$$\frac{d}{dx}(\sin^{-1}(ax)) = \frac{a}{\sqrt{1-(ax)^2}}$$

$$\frac{d}{dx}(\cos^{-1}(ax)) = \frac{-a}{\sqrt{1-(ax)^2}}$$

$$\frac{d}{dx}(\tan^{-1}(ax)) = \frac{a}{1+(ax)^2}$$

$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, \quad n \neq -1$ $\int e^{ax} dx = \frac{1}{a} e^{ax} + c$ $\int \frac{1}{x} dx = \log_e |x| + c$ $\int \sin(ax) \, dx = -\frac{1}{a} \cos(ax) + c$ $\int \cos(ax) \, dx = \frac{1}{a} \sin(ax) + c$ $\int \sec^2(ax) dx = \frac{1}{a} \tan(ax) + c$ $\int \csc^2(ax)dx = -\frac{1}{a}\cot(ax) + c$ $\int \sec(ax)\tan(ax)\,dx = \frac{1}{a}\sec(ax) + c$ $\int \csc(ax)\cot(ax)\,dx = -\frac{1}{a}\csc(ax) + c$ $\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \left(\frac{x}{a} \right) + c, \ a > 0$ $\int \frac{-1}{\sqrt{a^2 - x^2}} dx = \cos^{-1} \left(\frac{x}{a} \right) + c, \ a > 0$ $\int \frac{a}{a^2 + x^2} dx = \tan^{-1} \left(\frac{x}{a} \right) + c$ $\int (ax+b)^n dx = \frac{1}{a(n+1)}(ax+b)^{n+1} + c, \quad n \neq -1$

 $\int \frac{1}{ax+b} dx = \frac{1}{a} \log_e |ax+b| + c$

Calculus - continued

product rule	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$
quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
chain rule	$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
integration by parts	$\int u \frac{dv}{dx} dx = u v - \int v \frac{du}{dx} dx$
Euler's method	If $\frac{dy}{dx} = f(x, y)$, $x_0 = a$ and $y_0 = b$, then $x_{n+1} = x_n + h$ and $y_{n+1} = y_n + h \times f(x_n, y_n)$.
arc length parametric	$\int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$
surface area Cartesian about <i>x</i> -axis	$\int_{x_1}^{x_2} 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$
surface area Cartesian about <i>y</i> -axis	$\int_{y_1}^{y_2} 2\pi x \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy$
surface area parametric about <i>x</i> -axis	$\int_{t_1}^{t_2} 2\pi y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$
surface area parametric about <i>y</i> -axis	$\int_{t_1}^{t_2} 2\pi x \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$

Kinematics

acceleration	$a = \frac{d^2x}{dt^2} = \frac{dv}{dt} = 1$	$v\frac{dv}{dx} = \frac{d}{dx} \left(\frac{1}{2}v^2\right)$
constant acceleration formulas	v = u + at	$s = ut + \frac{1}{2}at^2$
	$v^2 = u^2 + 2as$	$s = \frac{1}{2}(u+v)t$

SPECMATH EXAM

Vectors in two and three dimensions

$\underline{\mathbf{r}}(t) = x(t)\underline{\mathbf{i}} + y(t)\underline{\mathbf{j}} + z(t)\underline{\mathbf{k}}$	$ \underline{r}(t) = \sqrt{x(t)^2 + y(t)^2 + z(t)^2}$
	$\dot{\underline{\mathbf{r}}}(t) = \frac{d\underline{\mathbf{r}}}{dt} = \frac{dx}{dt}\dot{\mathbf{i}} + \frac{dy}{dt}\dot{\underline{\mathbf{j}}} + \frac{dz}{dt}\dot{\mathbf{k}}$
	vector scalar product $ \underline{\mathbf{r}}_{1} \cdot \underline{\mathbf{r}}_{2} = \left \underline{\mathbf{r}}_{1} \right \left \underline{\mathbf{r}}_{2} \right \cos(\theta) = x_{1}x_{2} + y_{1}y_{2} + z_{1}z_{2} $
for $\underline{r}_1 = x_1 \underline{i} + y_1 \underline{j} + z_1 \underline{k}$ and $\underline{r}_2 = x_2 \underline{i} + y_2 \underline{j} + z_2 \underline{k}$	vector cross product $ \begin{vmatrix} \dot{\mathbf{r}}_{1} \times \dot{\mathbf{r}}_{2} = \begin{vmatrix} \dot{\mathbf{i}} & \dot{\mathbf{j}} & \dot{\mathbf{k}} \\ x_{1} & y_{1} & z_{1} \\ x_{2} & y_{2} & z_{2} \end{vmatrix} = (y_{1}z_{2} - y_{2}z_{1})\dot{\mathbf{i}} + (x_{2}z_{1} - x_{1}z_{2})\dot{\mathbf{j}} + (x_{1}y_{2} - x_{2}y_{1})\dot{\mathbf{k}} $
vector equation of a line	$\vec{\mathbf{r}}(t) = \vec{\mathbf{r}}_1 + t\vec{\mathbf{r}}_2 = (x_1 + x_2 t)\vec{\mathbf{i}} + (y_1 + y_2 t)\vec{\mathbf{j}} + (z_1 + z_2 t)\vec{\mathbf{k}}$
parametric equation of a line	$x(t) = x_1 + x_2t$ $y(t) = y_1 + y_2t$ $z(t) = z_1 + z_2t$
vector equation of a plane	$ \mathbf{r}(s,t) = \mathbf{r}_0 + s\mathbf{r}_1 + t\mathbf{r}_2 = (x_0 + x_1 s + x_2 t)\mathbf{i} + (y_0 + y_1 s + y_2 t)\mathbf{j} + (z_0 + z_1 s + z_2 t)\mathbf{k} $
parametric equation of a plane	$x(s, t) = x_0 + x_1 s + x_2 t, \ y(s, t) = y_0 + y_1 s + y_2 t, \ z(s, t) = z_0 + z_1 s + z_2 t$
Cartesian equation of a plane	ax + by + cz = d

Circular functions

$\cos^2(x) + \sin^2(x) = 1$	
$1 + \tan^2(x) = \sec^2(x)$	$\cot^2(x) + 1 = \csc^2(x)$
$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$	$\sin(x - y) = \sin(x)\cos(y) - \cos(x)\sin(y)$
$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$	$\cos(x - y) = \cos(x)\cos(y) + \sin(x)\sin(y)$
$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$	$\tan(x-y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$
$\sin(2x) = 2\sin(x)\cos(x)$	
$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$	$\tan(2x) = \frac{2\tan(x)}{1-\tan^2(x)}$
$\sin^2(ax) = \frac{1}{2} \left(1 - \cos(2ax) \right)$	$\cos^2(ax) = \frac{1}{2} \left(1 + \cos(2ax) \right)$