STUDENT NUMBER

Figures Words								

\square

SPECIALIST MATHEMATICS
 Written examination 1

Friday 27 October 2006
Reading time: 3.00 pm to 3.15 pm (15 minutes)
Writing time: 3.15 pm to 4.15 pm (1 hour)

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
9	9	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.
- Students are not permitted to bring into the examination room: notes of any kind, a calculator of any type, blank sheets of paper and/or white out liquid/tape.

Materials supplied

- Question and answer book of 10 pages with a detachable sheet of miscellaneous formulas in the centrefold.
- Working space is provided throughout the book.

Instructions

- Detach the formula sheet from the centre of this book during reading time.
- Write your student number in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Instructions

Answer all questions in the spaces provided.
A decimal approximation will not be accepted if an exact answer is required to a question.
In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.
Take the acceleration due to gravity to have magnitude $g \mathrm{~m} / \mathrm{s}^{2}$, where $g=9.8$.

Question 1

Consider the relation $2 x y-9 y^{2}+9=0$.
a. Find an expression for $\frac{d y}{d x}$ in terms of x and y.
\qquad
\qquad
\qquad
\qquad
2 marks
b. Hence find the exact value of $\frac{d y}{d x}$ when $y=1$.
\qquad
\qquad
\qquad
2 marks

Question 2

Solve the differential equation $\frac{d y}{d x}=x \sqrt{x^{2}-16}, x \geq 4$ given that $y=13$ when $x=5$.
\qquad

Question 3

a. Sketch the graph with equation $y=\frac{36}{2 x^{2}-18}$, clearly indicating the location of any asymptotes and
intercepts with the axes.

b. Find the exact area bounded by $y=\frac{36}{2 x^{2}-18}$, the x-axis and the lines $x=-2$ and $x=2$.
\qquad

Question 4

A model glider with a mass of 4 kg is suspended from the roof of a wind tunnel by a thin wire. A light wind exerts a horizontal force of magnitude $\frac{g}{2}$ newtons on the model glider.
a. Let T newtons be the magnitude of the tension in the suspending wire. Clearly label all forces acting on the model glider on the following diagram.

1 mark
b. Calculate the value of T, giving your answer in the form $\frac{g \sqrt{a}}{b}$ where a and b are positive integers.
\qquad
\qquad
\qquad
\qquad
\qquad
2 marks

Question 5

a. Show that $\tan \left(\frac{\pi}{8}\right)=\sqrt{2}-1$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
4 marks
b. If $y=\tan ^{-1}(x-1)+a \tan \left(\frac{\pi}{8}\right)$, where a is a real constant, find the minimum value of a for which $y>0$
for all x.
\qquad
\qquad
\qquad
2 marks

Question 6

The region in the first quadrant enclosed by the coordinate axes, the graph with equation $y=e^{-x}$ and the straight line $x=a$ where $a>0$, is rotated about the x-axis to form a solid of revolution.
a. Express the volume of the solid of revolution as a definite integral.
\qquad
\qquad
\qquad
b. Calculate the volume of the solid of revolution, in terms of a.
\qquad
\qquad
\qquad
\qquad
\qquad
1 mark
c. Find the exact value of a if the volume is $\frac{5 \pi}{18}$ cubic units.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 7

The position vector of a moving particle is given by $\underset{\sim}{\mathrm{r}}(t)=\sqrt{t-2} \underset{\sim}{\mathrm{i}}+2 t \underset{\sim}{\mathrm{j}}$ for $2 \leq t \leq 6$.
a. Find the cartesian equation of the path followed by the particle.
\qquad
\qquad
\qquad
\qquad
\qquad
2 marks
b. Sketch the path of the particle on the axes provided.

Question 8

Find an antiderivative of $\frac{2+6 x}{\sqrt{4-x^{2}}}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 9

a. Express $1+\sqrt{3} i$ in polar form.
\qquad
\qquad
b. Solve the quadratic equation $z^{2}+2 z-\sqrt{3} i=0$, expressing your answers in exact cartesian form.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

SPECIALIST MATHEMATICS

Written examinations 1 and 2

FORMULA SHEET

Directions to students

Detach this formula sheet during reading time.
This formula sheet is provided for your reference.

Specialist Mathematics Formulas

Mensuration

area of a trapezium:
curved surface area of a cylinder:
volume of a cylinder:
volume of a cone:
volume of a pyramid:
volume of a sphere:
area of a triangle:
sine rule:
cosine rule:
$\frac{1}{2}(a+b) h$
$2 \pi r h$
$\pi r^{2} h$
$\frac{1}{3} \pi r^{2} h$
$\frac{1}{3} A h$
$\frac{4}{3} \pi r^{3}$
$\frac{1}{2} b c \sin A$
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$c^{2}=a^{2}+b^{2}-2 a b \cos C$

Coordinate geometry

ellipse: $\quad \frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1 \quad$ hyperbola: $\quad \frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$

Circular (trigonometric) functions

$\cos ^{2}(x)+\sin ^{2}(x)=1$
$1+\tan ^{2}(x)=\sec ^{2}(x)$
$\cot ^{2}(x)+1=\operatorname{cosec}^{2}(x)$
$\sin (x+y)=\sin (x) \cos (y)+\cos (x) \sin (y)$
$\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)$
$\sin (x-y)=\sin (x) \cos (y)-\cos (x) \sin (y)$
$x(x+y)=\cos (x) \cos (y)-\sin (x) \sin (x)$
$\cos (x-y)=\cos (x) \cos (y)+\sin (x) \sin (y)$
$\tan (x+y)=\frac{\tan (x)+\tan (y)}{1-\tan (x) \tan (y)}$
$\tan (x-y)=\frac{\tan (x)-\tan (y)}{1+\tan (x) \tan (y)}$
$\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)=2 \cos ^{2}(x)-1=1-2 \sin ^{2}(x)$
$\sin (2 x)=2 \sin (x) \cos (x)$
$\tan (2 x)=\frac{2 \tan (x)}{1-\tan ^{2}(x)}$

function	$\sin ^{-1}$	$\cos ^{-1}$	$\tan ^{-1}$
domain	$[-1,1]$	$[-1,1]$	R
range	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$	$[0, \pi]$	$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Algebra (complex numbers)

$z=x+y i=r(\cos \theta+i \sin \theta)=r \operatorname{cis} \theta$
$|z|=\sqrt{x^{2}+y^{2}}=r$

$$
\begin{aligned}
& -\pi<\operatorname{Arg} z \leq \pi \\
& \frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} \operatorname{cis}\left(\theta_{1}-\theta_{2}\right)
\end{aligned}
$$

Calculus

$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c, n \neq-1$
$\frac{d}{d x}\left(e^{a x}\right)=a e^{a x}$
$\int e^{a x} d x=\frac{1}{a} e^{a x}+c$
$\frac{d}{d x}\left(\log _{e}(x)\right)=\frac{1}{x}$
$\int \frac{1}{x} d x=\log _{e}|x|+c$
$\frac{d}{d x}(\sin (a x))=a \cos (a x)$
$\int \sin (a x) d x=-\frac{1}{a} \cos (a x)+c$
$\frac{d}{d x}(\cos (a x))=-a \sin (a x)$
$\int \cos (a x) d x=\frac{1}{a} \sin (a x)+c$
$\frac{d}{d x}(\tan (a x))=a \sec ^{2}(a x)$
$\int \sec ^{2}(a x) d x=\frac{1}{a} \tan (a x)+c$
$\frac{d}{d x}\left(\sin ^{-1}(x)\right)=\frac{1}{\sqrt{1-x^{2}}}$
$\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+c, a>0$
$\frac{d}{d x}\left(\cos ^{-1}(x)\right)=\frac{-1}{\sqrt{1-x^{2}}}$
$\int \frac{-1}{\sqrt{a^{2}-x^{2}}} d x=\cos ^{-1}\left(\frac{x}{a}\right)+c, a>0$
$\frac{d}{d x}\left(\tan ^{-1}(x)\right)=\frac{1}{1+x^{2}}$
$\int \frac{a}{a^{2}+x^{2}} d x=\tan ^{-1}\left(\frac{x}{a}\right)+c$
product rule:

$$
\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

quotient rule:

$$
\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
$$

chain rule:

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

Euler's method: If $\frac{d y}{d x}=f(x), x_{0}=a$ and $y_{0}=b$, then $x_{n+1}=x_{n}+h$ and $y_{n+1}=y_{n}+h f\left(x_{n}\right)$
acceleration:

$$
a=\frac{d^{2} x}{d t^{2}}=\frac{d v}{d t}=v \frac{d v}{d x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)
$$

constant (uniform) acceleration: $\quad v=u+a t \quad s=u t+\frac{1}{2} a t^{2} \quad v^{2}=u^{2}+2 a s \quad s=\frac{1}{2}(u+v) t$

Vectors in two and three dimensions

$$
\underset{\sim}{\mathrm{r}}=x \underset{\sim}{\mathrm{i}}+y \underset{\sim}{\mathrm{j}}+z \underset{\sim}{\mathrm{k}}
$$

$|\underset{\sim}{\mathbf{r}}|=\sqrt{x^{2}+y^{2}+z^{2}}=r$
$\underset{\sim}{r}{ }_{1} \cdot \underset{\sim}{r}{ }_{2}=r_{1} r_{2} \cos \theta=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$
$\underset{\sim}{\dot{\mathrm{i}}}=\frac{d \underset{\sim}{\mathrm{r}}}{d t}=\frac{d x}{d t} \mathrm{i}+\frac{d y}{d t} \underset{\sim}{\mathrm{j}}+\frac{d z}{d t} \underset{\sim}{\mathrm{k}}$

Mechanics

momentum:
equation of motion:
friction:
$\underset{\sim}{p}=m \underset{\sim}{v}$
$\mathrm{R}=m \mathrm{a}$
$F \leq \mu N$

