
\square

SPECIALIST MATHEMATICS
 Written examination 1

Monday 3 November 2008
Reading time: 3.00 pm to 3.15 pm (15 minutes)
Writing time: 3.15 pm to 4.15 pm (1 hour)

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
10	10	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.
- Students are not permitted to bring into the examination room: notes of any kind, a calculator of any type, blank sheets of paper and/or white out liquid/tape.

Materials supplied

- Question and answer book of 10 pages with a detachable sheet of miscellaneous formulas in the centrefold.
- Working space is provided throughout the book.

Instructions

- Detach the formula sheet from the centre of this book during reading time.
- Write your student number in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Instructions

Answer all questions in the spaces provided.
A decimal approximation will not be accepted if an exact answer is required to a question.
In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.
Take the acceleration due to gravity to have magnitude $g \mathrm{~m} / \mathrm{s}^{2}$, where $g=9.8$.

Question 1

Sketch the graph of $y=\frac{2}{x^{2}}-\frac{x}{2}$ on the axes below. Give the exact coordinates of any turning points and intercepts, and state the equations of all straight line asymptotes.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
5 marks

Question 2

Given the relation $3 x^{2}+2 x y+y^{2}=11$, find the gradient of the normal to the graph of the relation at the point in the first quadrant where $x=1$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
4 marks

Question 3

Consider the vectors $\underset{\sim}{a}=-3 \underset{\sim}{i}+2 \underset{\sim}{\mathrm{i}}+3 \underset{\sim}{k}, \underset{\sim}{\mathrm{k}}=-2 \underset{\sim}{\mathrm{i}}-2 \underset{\sim}{\mathrm{j}}+\underset{\sim}{\mathrm{k}}$ and $\underset{\sim}{\mathrm{c}}=m \underset{\sim}{\mathrm{i}}+n \underset{\sim}{\mathrm{k}}$ where m and n are non-zero real constants.
Find $\frac{m}{n}$ so that $\underset{\sim}{\mathrm{a}}, \underset{\sim}{\mathrm{b}}$ and $\underset{\sim}{\mathrm{c}}$ form a linearly dependent set of vectors.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 4
Given that $\sin \left(\frac{\pi}{10}\right)=\frac{\sqrt{5}-1}{4}$, find $\sec \left(\frac{\pi}{5}\right)$ in the form $a \sqrt{5}+b$, where $a, b \in R$.
\qquad
3 marks

Question 5

A particle moves in a straight line so that at time t seconds, it has acceleration $a \mathrm{~m} / \mathrm{s}^{2}$, velocity $v \mathrm{~m} / \mathrm{s}$ and position $x \mathrm{~m}$ relative to a fixed point on the line. The velocity and position of the particle at any time t seconds are related by $v=-x^{2}$. Initially $x=1$.
a. Find the initial acceleration of the particle.
\qquad
\qquad
\qquad
2 marks
b. Express x in terms of t.
\qquad
\qquad
\qquad
\qquad
\qquad
3 marks
Question 6
The curve with equation $y=f(x)$ passes through the point $P\left(\frac{\pi}{8}, 2\right)$ and has a gradient of -1 at this point.
Find the exact gradient of the curve at $x=\frac{\pi}{12}$ given that $f^{\prime \prime}(x)=-\sec ^{2}(2 x)$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 7

The side of a tent is supported by a vertical pole supplying a force of F newtons and a rope with a tension of 120 newtons. The tension in the tent fabric is T newtons as shown in the accompanying diagram.
Find the exact values of T and F.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3 marks

Question 8

The coordinates of three points are $A(1,0,5), B(-1,2,4)$ and $C(3,5,2)$.
a. Express the vector $\overrightarrow{A B}$ in the form $x \underset{\sim}{\mathrm{i}}+y \underset{\sim}{\mathrm{j}}+z \underset{\sim}{\mathrm{k}}$.
\qquad
\qquad
b. Find the coordinates of the point D such that $A B C D$ is a parallelogram.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2 marks
c. Prove that $A B C D$ is a rectangle.
\qquad
\qquad
\qquad
1 mark

Question 9

The graph of $y=\cos ^{-1}(x), x \in[-1,1]$ is shown below.

a. Find the area bounded by the graph shown above, the x-axis and the line with equation $x=-1$.
\qquad
\qquad
1 mark
b. Find the exact volume of the solid of revolution formed if the graph shown above is rotated about the y-axis.
\qquad

Question 10

Let $w=1+a i$ where a is a real constant.
a. Show that $\left|w^{3}\right|=\left(1+a^{2}\right)^{\frac{3}{2}}$.
\qquad
\qquad
1 mark
b. Find the values of a for which $\left|w^{3}\right|=8$.
\qquad
\qquad
\qquad
\qquad
1 mark
c. Let $p(z)=z^{3}+b z^{2}+c z+d$ where b, c and d are non-zero real constants. If $p(z)=0$ for $z=w$ and all roots of $p(z)=0$ satisfy $\left|z^{3}\right|=8$, find the values of b, c and d and show that these are the only possible values.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

SPECIALIST MATHEMATICS

Written examinations 1 and 2

FORMULA SHEET

Directions to students

Detach this formula sheet during reading time.
This formula sheet is provided for your reference.

Specialist Mathematics Formulas

Mensuration

area of a trapezium:
curved surface area of a cylinder:
volume of a cylinder:
volume of a cone:
volume of a pyramid:
volume of a sphere:
area of a triangle:
sine rule:
cosine rule:
$\frac{1}{2}(a+b) h$
$2 \pi r h$
$\pi r^{2} h$
$\frac{1}{3} \pi r^{2} h$
$\frac{1}{3} A h$
$\frac{4}{3} \pi r^{3}$
$\frac{1}{2} b c \sin A$
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$c^{2}=a^{2}+b^{2}-2 a b \cos C$

Coordinate geometry

ellipse: $\quad \frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1 \quad$ hyperbola: $\quad \frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$

Circular (trigonometric) functions

$\cos ^{2}(x)+\sin ^{2}(x)=1$
$1+\tan ^{2}(x)=\sec ^{2}(x)$
$\sin (x+y)=\sin (x) \cos (y)+\cos (x) \sin (y)$
$\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)$
$\tan (x+y)=\frac{\tan (x)+\tan (y)}{1-\tan (x) \tan (y)}$

$$
\begin{aligned}
& \cot ^{2}(x)+1=\operatorname{cosec}^{2}(x) \\
& \sin (x-y)=\sin (x) \cos (y)-\cos (x) \sin (y) \\
& \cos (x-y)=\cos (x) \cos (y)+\sin (x) \sin (y) \\
& \tan (x-y)=\frac{\tan (x)-\tan (y)}{1+\tan (x) \tan (y)}
\end{aligned}
$$

$\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)=2 \cos ^{2}(x)-1=1-2 \sin ^{2}(x)$
$\sin (2 x)=2 \sin (x) \cos (x)$
$\tan (2 x)=\frac{2 \tan (x)}{1-\tan ^{2}(x)}$

function	$\sin ^{-1}$	$\cos ^{-1}$	$\tan ^{-1}$
domain	$[-1,1]$	$[-1,1]$	R
range	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$	$[0, \pi]$	$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Algebra (complex numbers)

$z=x+y i=r(\cos \theta+i \sin \theta)=r \operatorname{cis} \theta$
$|z|=\sqrt{x^{2}+y^{2}}=r$

$$
\begin{aligned}
& -\pi<\operatorname{Arg} z \leq \pi \\
& \frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} \operatorname{cis}\left(\theta_{1}-\theta_{2}\right)
\end{aligned}
$$

$z^{n}=r^{n} \operatorname{cis}(n \theta)$ (de Moivre's theorem)

Calculus

$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c, n \neq-1$
$\frac{d}{d x}\left(e^{a x}\right)=a e^{a x}$
$\int e^{a x} d x=\frac{1}{a} e^{a x}+c$
$\frac{d}{d x}\left(\log _{e}(x)\right)=\frac{1}{x}$
$\int \frac{1}{x} d x=\log _{e}|x|+c$
$\frac{d}{d x}(\sin (a x))=a \cos (a x)$
$\int \sin (a x) d x=-\frac{1}{a} \cos (a x)+c$
$\frac{d}{d x}(\cos (a x))=-a \sin (a x)$
$\int \cos (a x) d x=\frac{1}{a} \sin (a x)+c$
$\frac{d}{d x}(\tan (a x))=a \sec ^{2}(a x)$
$\int \sec ^{2}(a x) d x=\frac{1}{a} \tan (a x)+c$
$\frac{d}{d x}\left(\sin ^{-1}(x)\right)=\frac{1}{\sqrt{1-x^{2}}}$
$\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+c, a>0$
$\frac{d}{d x}\left(\cos ^{-1}(x)\right)=\frac{-1}{\sqrt{1-x^{2}}}$
$\int \frac{-1}{\sqrt{a^{2}-x^{2}}} d x=\cos ^{-1}\left(\frac{x}{a}\right)+c, a>0$
$\frac{d}{d x}\left(\tan ^{-1}(x)\right)=\frac{1}{1+x^{2}}$
$\int \frac{a}{a^{2}+x^{2}} d x=\tan ^{-1}\left(\frac{x}{a}\right)+c$
product rule:

$$
\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

quotient rule:

$$
\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
$$

chain rule:

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

Euler's method: If $\frac{d y}{d x}=f(x), x_{0}=a$ and $y_{0}=b$, then $x_{n+1}=x_{n}+h$ and $y_{n+1}=y_{n}+h f\left(x_{n}\right)$
acceleration:

$$
a=\frac{d^{2} x}{d t^{2}}=\frac{d v}{d t}=v \frac{d v}{d x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)
$$

constant (uniform) acceleration: $\quad v=u+a t \quad s=u t+\frac{1}{2} a t^{2} \quad v^{2}=u^{2}+2 a s \quad s=\frac{1}{2}(u+v) t$

Vectors in two and three dimensions

$$
\underset{\sim}{\mathrm{r}}=x \underset{\sim}{\mathrm{i}}+y \underset{\sim}{\mathrm{j}}+z \underset{\sim}{\mathrm{k}}
$$

$|\underset{\sim}{\mathbf{r}}|=\sqrt{x^{2}+y^{2}+z^{2}}=r$
$\underset{\sim}{r}{ }_{1} \cdot \underset{\sim}{r}{ }_{2}=r_{1} r_{2} \cos \theta=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$
$\underset{\sim}{\mathrm{i}}=\frac{d \underset{\sim}{\mathrm{r}}}{d t}=\frac{d x}{d t} \mathrm{i}+\frac{d y}{d t} \underset{\sim}{\mathrm{j}}+\frac{d z}{d t} \underset{\sim}{\mathrm{k}}$

Mechanics

momentum:
equation of motion:
friction:
$\underset{\sim}{\mathrm{p}}=m \underset{\sim}{\mathrm{v}}$
$\mathrm{R}=m \mathrm{a}$
$F \leq \mu N$

