Figures
Words

\square

SPECIALIST MATHEMATICS
 Written examination 1

Friday 30 October 2009
Reading time: 3.00 pm to 3.15 pm (15 minutes)
Writing time: 3.15 pm to 4.15 pm (1 hour)

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
10	10	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.
- Students are not permitted to bring into the examination room: notes of any kind, a calculator of any type, blank sheets of paper and/or white out liquid/tape.

Materials supplied

- Question and answer book of 9 pages with a detachable sheet of miscellaneous formulas in the centrefold.
- Working space is provided throughout the book.

Instructions

- Detach the formula sheet from the centre of this book during reading time.
- Write your student number in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Instructions

Answer all questions in the spaces provided.
A decimal approximation will not be accepted if an exact answer is required to a question.
In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.
Take the acceleration due to gravity to have magnitude $g \mathrm{~m} / \mathrm{s}^{2}$, where $g=9.8$.

Question 1

Find all solutions to the equation $z^{4}-z^{2}-6=0, z \in C$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 2

A 50 kg student stands in a lift which accelerates downwards at a rate of $2 \mathrm{~ms}^{-2}$.
a. Find the reaction of the lift floor on the student correct to the nearest newton.
\qquad
\qquad
\qquad
\qquad
\qquad
2 marks
A few minutes later the lift accelerates upwards at a rate of $2 \mathrm{~ms}^{-2}$.
b. Find the reaction of the lift floor on the student, correct to the nearest newton, during this second stage of the motion.
\qquad
\qquad
\qquad
\qquad
\qquad

Question 3

Resolve the vector $5 \underset{\sim}{i}+\underset{\sim}{\mathrm{j}}+3 \underset{\sim}{k}$ into two vector components, one which is parallel to the vector $-2 \underset{\sim}{i}-2 \underset{\sim}{j}+\underset{\sim}{k}$ and one which is perpendicular to it.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3 marks

Question 4

Given that $\cos (2 \theta)=\frac{3}{4}$ where $\theta \in\left(\frac{3 \pi}{4}, \pi\right)$, find $\operatorname{cis}(\theta)$ in cartesian form.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
4 marks

Question 5

Consider the family of curves defined by the relation $3 x^{3}-y^{2}+k x+5 y-2 x y=4$ where $k \in R$.
a. Verify that every curve in the family passes through the point (0,4), and find the other point of intersection with the y-axis.
\qquad
\qquad
\qquad
\qquad
\qquad
2 marks
b. Find an expression for $\frac{d y}{d x}$ in terms of x, y and k.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
c. Hence evaluate the gradient of the curve at the point $(1,1)$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 6

Find all real values of m such that $y=e^{m x}$ is a solution of $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}-10 y=0$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 7

A mass has acceleration $a \mathrm{~ms}^{-2}$ given by $a=v^{2}-3$, where $v \mathrm{~ms}^{-1}$ is the velocity of the mass when it has a displacement of x metres from the origin.
Find v in terms of x given that $v=-2$ where $x=1$.
\qquad

Question 8

a. Show that $f(x)=\frac{2+x^{2}}{4-x^{2}}$ can be written in the form $f(x)=-1+\frac{6}{4-x^{2}}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
1 mark
b. Find the exact area enclosed by the graph of $f(x)=\frac{2+x^{2}}{4-x^{2}}$, the x-axis, and the lines $x=-1$ and $x=1$.
\qquad

Question 9

Let $\frac{d y}{d x}=(y+2)^{2}+4$ and $y_{0}=y(0)=0$.
a. Solve the differential equation above giving y as a function of x.
b. Apply Euler's method to find y_{1}, using a step size of 0.1.
\qquad
\qquad
\qquad
\qquad

Question 10

Let $f(x)=\frac{2}{\pi} \arcsin \left(\frac{1}{2} x+1\right)-3$.
a. State the implied domain and the range of f.
\qquad
\qquad
\qquad
\qquad
2 marks
b. Find $f^{\prime}(x)$ giving your answer in the form $f^{\prime}(x)=\frac{a}{\pi \sqrt{b x(x+c)}}$ where a, b and c are integers.
\qquad
3 marks

SPECIALIST MATHEMATICS

Written examinations 1 and 2

FORMULA SHEET

Directions to students

Detach this formula sheet during reading time.
This formula sheet is provided for your reference.

Specialist Mathematics Formulas

Mensuration

area of a trapezium:
curved surface area of a cylinder:
volume of a cylinder:
volume of a cone:
volume of a pyramid:
volume of a sphere:
area of a triangle:
sine rule:
cosine rule:
$\frac{1}{2}(a+b) h$
$2 \pi r h$
$\pi r^{2} h$
$\frac{1}{3} \pi r^{2} h$
$\frac{1}{3} A h$
$\frac{4}{3} \pi r^{3}$
$\frac{1}{2} b c \sin A$
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$c^{2}=a^{2}+b^{2}-2 a b \cos C$

Coordinate geometry

ellipse: $\quad \frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1 \quad$ hyperbola: $\quad \frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$

Circular (trigonometric) functions

$\cos ^{2}(x)+\sin ^{2}(x)=1$
$1+\tan ^{2}(x)=\sec ^{2}(x)$
$\sin (x+y)=\sin (x) \cos (y)+\cos (x) \sin (y)$
$\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)$
$\cot ^{2}(x)+1=\operatorname{cosec}^{2}(x)$
$\sin (x-y)=\sin (x) \cos (y)-\cos (x) \sin (y)$
$\cos (x-y)=\cos (x) \cos (y)+\sin (x) \sin (y)$
$\tan (x+y)=\frac{\tan (x)+\tan (y)}{1-\tan (x) \tan (y)}$
$\tan (x-y)=\frac{\tan (x)-\tan (y)}{1+\tan (x) \tan (y)}$
$\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)=2 \cos ^{2}(x)-1=1-2 \sin ^{2}(x)$
$\sin (2 x)=2 \sin (x) \cos (x)$
$\tan (2 x)=\frac{2 \tan (x)}{1-\tan ^{2}(x)}$

function	$\sin ^{-1}$	$\cos ^{-1}$	$\tan ^{-1}$
domain	$[-1,1]$	$[-1,1]$	R
range	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$	$[0, \pi]$	$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Algebra (complex numbers)

$z=x+y i=r(\cos \theta+i \sin \theta)=r \operatorname{cis} \theta$
$|z|=\sqrt{x^{2}+y^{2}}=r$

$$
\begin{aligned}
& -\pi<\operatorname{Arg} z \leq \pi \\
& \frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} \operatorname{cis}\left(\theta_{1}-\theta_{2}\right)
\end{aligned}
$$

Calculus

$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c, n \neq-1$
$\frac{d}{d x}\left(e^{a x}\right)=a e^{a x}$
$\int e^{a x} d x=\frac{1}{a} e^{a x}+c$
$\frac{d}{d x}\left(\log _{e}(x)\right)=\frac{1}{x}$
$\int \frac{1}{x} d x=\log _{e}|x|+c$
$\frac{d}{d x}(\sin (a x))=a \cos (a x)$
$\int \sin (a x) d x=-\frac{1}{a} \cos (a x)+c$
$\frac{d}{d x}(\cos (a x))=-a \sin (a x)$
$\int \cos (a x) d x=\frac{1}{a} \sin (a x)+c$
$\frac{d}{d x}(\tan (a x))=a \sec ^{2}(a x)$
$\int \sec ^{2}(a x) d x=\frac{1}{a} \tan (a x)+c$
$\frac{d}{d x}\left(\sin ^{-1}(x)\right)=\frac{1}{\sqrt{1-x^{2}}}$
$\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+c, a>0$
$\frac{d}{d x}\left(\cos ^{-1}(x)\right)=\frac{-1}{\sqrt{1-x^{2}}}$
$\int \frac{-1}{\sqrt{a^{2}-x^{2}}} d x=\cos ^{-1}\left(\frac{x}{a}\right)+c, a>0$
$\frac{d}{d x}\left(\tan ^{-1}(x)\right)=\frac{1}{1+x^{2}}$
$\int \frac{a}{a^{2}+x^{2}} d x=\tan ^{-1}\left(\frac{x}{a}\right)+c$
product rule:

$$
\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

quotient rule:

$$
\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
$$

chain rule:

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

Euler's method: If $\frac{d y}{d x}=f(x), x_{0}=a$ and $y_{0}=b$, then $x_{n+1}=x_{n}+h$ and $y_{n+1}=y_{n}+h f\left(x_{n}\right)$
acceleration:

$$
a=\frac{d^{2} x}{d t^{2}}=\frac{d v}{d t}=v \frac{d v}{d x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)
$$

constant (uniform) acceleration: $\quad v=u+a t \quad s=u t+\frac{1}{2} a t^{2} \quad v^{2}=u^{2}+2 a s \quad s=\frac{1}{2}(u+v) t$

Vectors in two and three dimensions

$$
\underset{\sim}{\mathrm{r}}=x \underset{\sim}{\mathrm{i}}+y \underset{\sim}{\mathrm{j}}+z \underset{\sim}{\mathrm{k}}
$$

$|\underset{\sim}{\mathbf{r}}|=\sqrt{x^{2}+y^{2}+z^{2}}=r$
$\underset{\sim}{r}{ }_{1} \cdot \underset{\sim}{r}{ }_{2}=r_{1} r_{2} \cos \theta=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$
$\underset{\sim}{\dot{\mathrm{r}}}=\frac{d \underset{\sim}{\mathrm{r}}}{d t}=\frac{d x}{d t} \mathrm{i}+\frac{d y}{d t} \mathrm{j}+\frac{d z}{d t} \underset{\sim}{\mathrm{k}}$

Mechanics

momentum:
equation of motion:
$\underset{\sim}{\mathrm{p}}=m \underset{\sim}{\mathrm{v}}$
$\mathrm{R}=m \mathrm{a}$
friction:
$F \leq \mu N$

