Figures
Words

\square

SPECIALIST MATHEMATICS
 Written examination 1

Friday 29 October 2010
Reading time: 9.00 am to 9.15 am (15 minutes)
Writing time: 9.15 am to 10.15 am (1 hour)

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
10	10	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.
- Students are not permitted to bring into the examination room: notes of any kind, a calculator of any type, blank sheets of paper and/or white out liquid/tape.

Materials supplied

- Question and answer book of 11 pages with a detachable sheet of miscellaneous formulas in the centrefold.
- Working space is provided throughout the book.

Instructions

- Detach the formula sheet from the centre of this book during reading time.
- Write your student number in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Instructions

Answer all questions in the spaces provided.
Unless otherwise specified an exact answer is required to a question.
In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.
Take the acceleration due to gravity to have magnitude $g \mathrm{~m} / \mathrm{s}^{2}$, where $g=9.8$.

Question 1

Consider $f(z)=z^{3}+9 z^{2}+28 z+20, z \in C$.
Given that $f(-1)=0$, factorise $f(z)$ over C.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3 marks

Question 2

A body of mass 2 kg is initially at rest and is acted on by a resultant force of $v-4$ newtons where v is the velocity in m / s. The body moves in a straight line as a result of the force.
a. Show that the acceleration of the body is given by $\frac{d v}{d t}=\frac{v-4}{2}$.
\qquad
\qquad
\qquad
1 mark
b. Solve the differential equation in part a. to find v as a function of t.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
4 marks

Question 3

Relative to an origin O, point A has cartesian coordinates $(1,2,2)$ and point B has cartesian coordinates $(-1,3,4)$.
a. Find an expression for the vector $\overrightarrow{A B}$ in the form $a \underset{\sim}{\mathrm{i}}+b \underset{\sim}{\mathrm{j}}+c \underset{\sim}{\mathrm{k}}$.
\qquad
\qquad
1 mark
b. Show that the cosine of the angle between the vectors $\overrightarrow{O A}$ and $\overrightarrow{A B}$ is $\frac{4}{9}$.
\qquad
\qquad
\qquad
\qquad
1 mark
c. Hence find the exact area of the triangle $O A B$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3 marks

Question 4

Given that $z=1+i$, plot and label points for each of the following on the argand diagram below.
i. z
ii. z^{2}
iii. z^{4}

Question 5

Given that $f(x)=\arctan (2 x)$, find $f^{\prime \prime}\left(\frac{\pi}{2}\right)$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3 marks

Question 6
Evaluate $\int_{\frac{\pi}{2}}^{\frac{3 \pi}{4}} \cos ^{2}(2 x) \sin (2 x) d x$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 7

Consider the differential equation

$$
\frac{d^{2} y}{d x^{2}}=\frac{4 x}{\left(1-x^{2}\right)^{2}},-1<x<1
$$

for which $\frac{d y}{d x}=3$ when $x=0$, and $y=4$ when $x=0$.
Given that $\frac{d}{d x}\left(\frac{2}{1-x^{2}}\right)=\frac{4 x}{\left(1-x^{2}\right)^{2}}$, find the solution of this differential equation.
\qquad

Question 8

The path of a particle is given by $\underset{\sim}{\mathrm{r}}(t)=t \sin (t) \mathrm{i}-t \cos (t) \mathrm{j}, t \geq 0$. The particle leaves the origin at $t=0$ and then spirals outwards.
a. Show that the second time the particle crosses the x-axis after leaving the origin occurs when $t=\frac{3 \pi}{2}$.
\qquad
\qquad
\qquad
\qquad
b. Find the speed of the particle when $t=\frac{3 \pi}{2}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3 marks
Let θ be the acute angle at which the path of the particle crosses the x-axis.
c. Find $\tan (\theta)$ when $t=\frac{3 \pi}{2}$.
\qquad
\qquad
\qquad
\qquad
1 mark

Question 9

a. On the axes below sketch the graph with equation $x^{2}-\frac{(y-2)^{2}}{4}=1$. State all intercepts with the coordinate axes and give the equations of any asymptotes.

\qquad
\qquad
\qquad
\qquad
3 marks
b. Find the gradient of the curve with equation $x^{2}-\frac{(y-2)^{2}}{4}=1$ at the point where $x=2$ and $y<0$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 10

Part of the graph with equation $y=\left(x^{2}-1\right) \sqrt{x+1}$ is shown below.

Find the area that is bounded by the curve and the x-axis. Give your answer in the form $\frac{a \sqrt{b}}{c}$ where a, b and c are integers.
\qquad

SPECIALIST MATHEMATICS

Written examinations 1 and 2

FORMULA SHEET

Directions to students

Detach this formula sheet during reading time.
This formula sheet is provided for your reference.

Specialist Mathematics Formulas

Mensuration

area of a trapezium:
curved surface area of a cylinder:
volume of a cylinder:
volume of a cone:
volume of a pyramid:
volume of a sphere:
area of a triangle:
sine rule:
cosine rule:
$\frac{1}{2}(a+b) h$
$2 \pi r h$
$\pi r^{2} h$
$\frac{1}{3} \pi r^{2} h$
$\frac{1}{3} A h$
$\frac{4}{3} \pi r^{3}$
$\frac{1}{2} b c \sin A$
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$c^{2}=a^{2}+b^{2}-2 a b \cos C$

Coordinate geometry

ellipse: $\quad \frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1 \quad$ hyperbola: $\quad \frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$

Circular (trigonometric) functions

$\cos ^{2}(x)+\sin ^{2}(x)=1$
$1+\tan ^{2}(x)=\sec ^{2}(x)$
$\sin (x+y)=\sin (x) \cos (y)+\cos (x) \sin (y)$
$\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)$
$\cot ^{2}(x)+1=\operatorname{cosec}^{2}(x)$
$\sin (x-y)=\sin (x) \cos (y)-\cos (x) \sin (y)$
$\tan (x+y)=\frac{\tan (x)+\tan (y)}{1-\tan (x) \tan (y)}$
$\cos (x-y)=\cos (x) \cos (y)+\sin (x) \sin (y)$
$\tan (x-y)=\frac{\tan (x)-\tan (y)}{1+\tan (x) \tan (y)}$
$\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)=2 \cos ^{2}(x)-1=1-2 \sin ^{2}(x)$
$\sin (2 x)=2 \sin (x) \cos (x)$
$\tan (2 x)=\frac{2 \tan (x)}{1-\tan ^{2}(x)}$

function	$\sin ^{-1}$	$\cos ^{-1}$	$\tan ^{-1}$
domain	$[-1,1]$	$[-1,1]$	R
range	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$	$[0, \pi]$	$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Algebra (complex numbers)

$z=x+y i=r(\cos \theta+i \sin \theta)=r \operatorname{cis} \theta$
$|z|=\sqrt{x^{2}+y^{2}}=r$

$$
\begin{aligned}
& -\pi<\operatorname{Arg} z \leq \pi \\
& \frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} \operatorname{cis}\left(\theta_{1}-\theta_{2}\right)
\end{aligned}
$$

$z^{n}=r^{n} \operatorname{cis}(n \theta)$ (de Moivre's theorem)

Calculus

$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c, n \neq-1$
$\frac{d}{d x}\left(e^{a x}\right)=a e^{a x}$
$\int e^{a x} d x=\frac{1}{a} e^{a x}+c$
$\frac{d}{d x}\left(\log _{e}(x)\right)=\frac{1}{x}$
$\int \frac{1}{x} d x=\log _{e}|x|+c$
$\frac{d}{d x}(\sin (a x))=a \cos (a x)$
$\int \sin (a x) d x=-\frac{1}{a} \cos (a x)+c$
$\frac{d}{d x}(\cos (a x))=-a \sin (a x)$
$\int \cos (a x) d x=\frac{1}{a} \sin (a x)+c$
$\frac{d}{d x}(\tan (a x))=a \sec ^{2}(a x)$
$\int \sec ^{2}(a x) d x=\frac{1}{a} \tan (a x)+c$
$\frac{d}{d x}\left(\sin ^{-1}(x)\right)=\frac{1}{\sqrt{1-x^{2}}}$
$\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+c, a>0$
$\frac{d}{d x}\left(\cos ^{-1}(x)\right)=\frac{-1}{\sqrt{1-x^{2}}}$
$\int \frac{-1}{\sqrt{a^{2}-x^{2}}} d x=\cos ^{-1}\left(\frac{x}{a}\right)+c, a>0$
$\frac{d}{d x}\left(\tan ^{-1}(x)\right)=\frac{1}{1+x^{2}}$
$\int \frac{a}{a^{2}+x^{2}} d x=\tan ^{-1}\left(\frac{x}{a}\right)+c$
product rule:

$$
\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

quotient rule:

$$
\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
$$

chain rule:

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

Euler's method: If $\frac{d y}{d x}=f(x), x_{0}=a$ and $y_{0}=b$, then $x_{n+1}=x_{n}+h$ and $y_{n+1}=y_{n}+h f\left(x_{n}\right)$
acceleration:

$$
a=\frac{d^{2} x}{d t^{2}}=\frac{d v}{d t}=v \frac{d v}{d x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)
$$

constant (uniform) acceleration: $\quad v=u+a t \quad s=u t+\frac{1}{2} a t^{2} \quad v^{2}=u^{2}+2 a s \quad s=\frac{1}{2}(u+v) t$

Vectors in two and three dimensions

$$
\underset{\sim}{\mathrm{r}}=x \underset{\sim}{\mathrm{i}}+y \underset{\sim}{\mathrm{j}}+z \underset{\sim}{\mathrm{k}}
$$

$|\underset{\sim}{\mathrm{r}}|=\sqrt{x^{2}+y^{2}+z^{2}}=r$
$\stackrel{\mathrm{r}}{\sim}{ }_{1} \cdot \stackrel{\underset{\sim}{r}}{2}{ }_{2}=r_{1} r_{2} \cos \theta=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$
$\underset{\sim}{\dot{\mathrm{i}}}=\frac{d \underset{\sim}{\mathrm{r}}}{d t}=\frac{d x}{d t} \mathrm{i}+\frac{d y}{d t} \underset{\sim}{\mathrm{j}}+\frac{d z}{d t} \underset{\sim}{\mathrm{k}}$

Mechanics

momentum:
equation of motion:
friction:
$\underset{\sim}{\mathrm{p}}=m \underset{\sim}{\mathrm{v}}$
$\mathrm{R}=m \mathrm{a}$
$F \leq \mu N$

