

Victorian Certificate of Education 2015

SUPERVISOR TO ATTACH PROCESSING LABEL HERE

Letter

**STUDENT NUMBER** 

# SPECIALIST MATHEMATICS Written examination 1

Friday 6 November 2015

Reading time: 9.00 am to 9.15 am (15 minutes) Writing time: 9.15 am to 10.15 am (1 hour)

# **QUESTION AND ANSWER BOOK**

## Structure of book

| Number of | Number of questions | Number of |
|-----------|---------------------|-----------|
| questions | to be answered      | marks     |
| 9         | 9                   |           |

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are not permitted to bring into the examination room: notes of any kind, a calculator of any type, blank sheets of paper and/or correction fluid/tape.

### Materials supplied

- Question and answer book of 10 pages with a detachable sheet of miscellaneous formulas in the centrefold.
- Working space is provided throughout the book.

### Instructions

- Detach the formula sheet from the centre of this book during reading time.
- Write your **student number** in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

© VICTORIAN CURRICULUM AND ASSESSMENT AUTHORITY 2015

# THIS PAGE IS BLANK

### Instructions

Answer **all** questions in the spaces provided. Unless otherwise specified, an **exact** answer is required to a question. In questions where more than one mark is available, appropriate working **must** be shown. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale. Take the **acceleration due to gravity** to have magnitude  $g \text{ m/s}^2$ , where g = 9.8.

#### **Question 1** (3 marks)

Consider the rhombus *OABC* shown below, where  $\overrightarrow{OA} = a\underline{i}$  and  $\overrightarrow{OC} = \underline{i} + \underline{j} + \underline{k}$ , and *a* is a positive real constant.



**a.** Find *a*.

**b.** Show that the diagonals of the rhombus *OABC* are perpendicular.

2 marks

1 mark

### **Question 2** (4 marks)

A 20 kg parcel sits on the floor of a lift.

**a.** The lift is accelerating upwards at  $1.2 \text{ ms}^{-2}$ .

Find the reaction force of the lift floor on the parcel in newtons.

**b.** Find the acceleration of the lift downwards in ms<sup>-2</sup> so that the reaction of the lift floor on the parcel is 166 N.

2 marks

2 marks

### **Question 3** (4 marks)

The velocity of a particle at time t seconds is given by  $\dot{\mathbf{t}}(t) = (4t-3)\mathbf{i} + 2t\mathbf{j} - 5\mathbf{k}$ , where components are measured in metres per second.

Find the distance of the particle from the origin in metres when t = 2, given that  $\underline{r}(0) = \underline{i} - 2\underline{k}$ .

4

## **Question 4** (4 marks)

**a.** Find all solutions of  $z^3 = 8i, z \in C$  in cartesian form.

**b.** Find all solutions of  $(z - 2i)^3 = 8i, z \in C$  in cartesian form.

### **Question 5** (3 marks)

Find the volume generated when the region bounded by the graph of  $y = 2x^2 - 3$ , the line y = 5 and the *y*-axis is rotated about the *y*-axis.

3 marks

1 mark

## **Question 6** (4 marks)

The acceleration  $a \text{ ms}^{-2}$  of a body moving in a straight line in terms of the velocity  $v \text{ ms}^{-1}$  is given by  $a = 4v^2$ .

Given that v = e when x = 1, where x is the displacement of the body in metres, find the velocity of the body when x = 2.

# 

ii. On the axes above, sketch the graph of  $f^{-1}$ , labelling any asymptotes with their equations.

1 mark

| 1 r |
|-----|
|     |
| 2 m |
|     |
|     |
|     |
|     |

### Question 9 (6 marks)

Consider the curve represented by  $x^2 - xy + \frac{3}{2}y^2 = 9$ .

**a.** Find the gradient of the curve at any point (x, y).

| b. | Find the equation of the tangent to the curve at the point $(3, 0)$ and find the equation |
|----|-------------------------------------------------------------------------------------------|
|    | of the tangent to the curve at the point $(0, \sqrt{6})$ .                                |
|    | Write each equation in the form $y = ax + b$ .                                            |

2 marks

2 marks

c. Find the acute angle between the tangent to the curve at the point (3, 0) and the tangent to the curve at the point (0, √6). Give your answer in the form kπ, where k is a real constant.

2 marks

# **SPECIALIST MATHEMATICS**

Written examinations 1 and 2

**FORMULA SHEET** 

Instructions

Detach this formula sheet during reading time.

This formula sheet is provided for your reference.

© VICTORIAN CURRICULUM AND ASSESSMENT AUTHORITY 2015

# **Specialist Mathematics formulas**

## Mensuration

| area of a trapezium:               | $\frac{1}{2}(a+b)h$                                      |
|------------------------------------|----------------------------------------------------------|
| curved surface area of a cylinder: | $2\pi rh$                                                |
| volume of a cylinder:              | $\pi r^2 h$                                              |
| volume of a cone:                  | $\frac{1}{3}\pi r^2h$                                    |
| volume of a pyramid:               | $\frac{1}{3}Ah$                                          |
| volume of a sphere:                | $\frac{4}{3}\pi r^3$                                     |
| area of a triangle:                | $\frac{1}{2}bc\sin A$                                    |
| sine rule:                         | $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ |
| cosine rule:                       | $c^2 = a^2 + b^2 - 2ab\cos C$                            |

# **Coordinate geometry**

ellipse:  $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$  hyperbola:  $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$ 

# Circular (trigonometric) functions $\cos^2(u) + \sin^2(u) = 1$

$$\cos^{2}(x) + \sin^{2}(x) = 1$$
  

$$1 + \tan^{2}(x) = \sec^{2}(x)$$
  

$$\sin(x + y) = \sin(x) \cos(y) + \cos(x) \sin(y)$$
  

$$\cos(x + y) = \cos(x) \cos(y) - \sin(x) \sin(y)$$
  

$$\tan(x + y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$$
  

$$\cos(2x) = \cos^{2}(x) - \sin^{2}(x) = 2\cos^{2}(x) - 1 = 1 - 2\sin^{2}(x)$$

$$\sin(2x) = 2\,\sin(x)\,\cos(x)$$

$$\tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)}$$

 $\tan(x-y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$ 

 $\cot^2(x) + 1 = \csc^2(x)$ 

 $\sin(x - y) = \sin(x)\cos(y) - \cos(x)\sin(y)$ 

 $\cos(x - y) = \cos(x)\cos(y) + \sin(x)\sin(y)$ 

| function | $\sin^{-1}$                                 | $\cos^{-1}$    | tan <sup>-1</sup>                           |
|----------|---------------------------------------------|----------------|---------------------------------------------|
| domain   | [-1, 1]                                     | [-1, 1]        | R                                           |
| range    | $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ | [0, <i>π</i> ] | $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ |

# Algebra (complex numbers)

$$z = x + yi = r(\cos \theta + i \sin \theta) = r \operatorname{cis} \theta$$
  

$$|z| = \sqrt{x^2 + y^2} = r \qquad -\pi < \operatorname{Arg} z \le \pi$$
  

$$z_1 z_2 = r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2) \qquad \frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$$
  

$$z^n = r^n \operatorname{cis}(n\theta) \text{ (de Moivre's theorem)}$$

# Calculus

$$\frac{d}{dx}(x^{n}) = nx^{n-1} \qquad \int x^{n} dx = \frac{1}{n+1}x^{n+1} + c, n \neq -1$$

$$\frac{d}{dx}(e^{ax}) = ae^{ax} \qquad \int e^{ax} dx = \frac{1}{a}e^{ax} + c$$

$$\frac{d}{dx}(\log_{e}(x)) = \frac{1}{x} \qquad \int \frac{1}{x}dx = \log_{e}|x| + c$$

$$\frac{d}{dx}(\sin(ax)) = a\cos(ax) \qquad \int \sin(ax) dx = -\frac{1}{a}\cos(ax) + c$$

$$\frac{d}{dx}(\cos(ax)) = -a\sin(ax) \qquad \int \cos(ax) dx = \frac{1}{a}\sin(ax) + c$$

$$\frac{d}{dx}(\tan(ax)) = a\sec^{2}(ax) \qquad \int \sec^{2}(ax) dx = \frac{1}{a}\tan(ax) + c$$

$$\frac{d}{dx}(\sin^{-1}(x)) = \frac{1}{\sqrt{1-x^{2}}} \qquad \int \frac{1}{\sqrt{a^{2}-x^{2}}}dx = \sin^{-1}\left(\frac{x}{a}\right) + c, a > 0$$

$$\frac{d}{dx}(\tan^{-1}(x)) = \frac{1}{1+x^{2}} \qquad \int \frac{a^{2}+x^{2}}{a^{2}}dx = \tan^{-1}\left(\frac{x}{a}\right) + c$$

product rule:  

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$
quotient rule:  

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$
chain rule:  

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$
Euler's method:  
If  $\frac{dy}{dx} = f(x)$ ,  $x_0 = a$  and  $y_0 = b$ , then  $x_{n+1} = x_n + h$  and  $y_{n+1} = y_n + hf(x_n)$ 
acceleration:  

$$a = \frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$
constant (uniform) acceleration:  
 $v = u + at$   $s = ut + \frac{1}{2}at^2$   $v^2 = u^2 + 2as$   $s = \frac{1}{2}(u+v)t$ 

**TURN OVER** 

# Vectors in two and three dimensions

$$\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

$$|\mathbf{r}| = \sqrt{x^2 + y^2 + z^2} = r$$

$$\mathbf{r}_1 \cdot \mathbf{r}_2 = r_1 r_2 \cos \theta = x_1 x_2 + y_1 y_2 + z_1 z_2$$

$$\dot{\mathbf{r}} = \frac{d\mathbf{r}}{dt} = \frac{dx}{dt} \mathbf{i} + \frac{dy}{dt} \mathbf{j} + \frac{dz}{dt} \mathbf{k}$$

# Mechanics

| momentum:           | $\underset{\sim}{\mathbf{p}} = m_{\underset{\sim}{\mathbf{v}}}$ |
|---------------------|-----------------------------------------------------------------|
| equation of motion: | $\underset{\sim}{\mathbf{R}} = m\underset{\sim}{\mathbf{a}}$    |
| friction:           | $F \leq \mu N$                                                  |