Victorian Certificate of Education
2022

Letter

STUDENT NUMBER | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

SPECIALIST MATHEMATICS
 Written examination 1

Friday 4 November 2022
Reading time: 9.00 am to 9.15 am (15 minutes)
Writing time: 9.15 am to 10.15 am (1 hour)

QUESTION AND ANSWER BOOK

Structure of book		
Number of questions	Number of questions to be answered	Number of marks
10	10	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 13 pages
- Formula sheet
- Working space is provided throughout the book.

Instructions

- Write your student number in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are not drawn to scale.
- All written responses must be in English.

At the end of the examination

- You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Instructions

Answer all questions in the spaces provided.
Unless otherwise specified, an exact answer is required to a question.
In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.
Take the acceleration due to gravity to have magnitude $g \mathrm{~ms}^{-2}$, where $g=9.8$

Question 1 (3 marks)
Consider the equation $p(z)=z^{2}+6 i z-25, z \in C$.
a. Express $p(z)$ in the form $p(z)=(z+a i)^{2}+b$, where $a, b \in R$.
b. Hence, or otherwise, find the solutions of the equation $p(z)=0$.

Question 2 (3 marks)
Solve the differential equation $\frac{d y}{d x}=-x \sqrt{4-y^{2}}$ given that $y(2)=0$. Give your answer in the form $y=f(x)$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 3 (4 marks)
The time taken by a coffee machine to dispense a cup of coffee varies normally with a mean of 10 seconds and a standard deviation of 1.5 seconds.
a. Find the probability that more than 34 seconds is needed to dispense a total of four cups of coffee. Give your answer correct to two decimal places.
\qquad
\qquad
\qquad
\qquad
b.

This question has been redacted following the findings of the Independent Review into the VCAA's Examination-Setting Policies, Processes and Procedures for the VCE.

Question 4 (4 marks)
Find $\int \frac{3 x^{2}+4 x+12}{x\left(x^{2}+4\right)} d x$.
\qquad

Question 5 (3 marks)
A body of mass 10 kg , which is initially at rest, slides down a smooth inclined plane, as shown in the diagram below. The plane is inclined at an angle θ to the horizontal, where $\tan \theta=\frac{1}{3}$.

a. Find the speed of the body after the body has been in motion for two seconds.
\qquad
b. After the body has been in motion for two seconds, a constant braking force, R newtons, is applied to the body parallel to the plane so that the body has constant velocity.

Find the value of R.
\qquad
\qquad
\qquad
\qquad

Question 6 (6 marks)
a. Find the cosine of the acute angle between the vectors $\underset{\sim}{a}=2 \underset{\sim}{i}-3 \underset{\sim}{j}+6 \underset{\sim}{k}$ and $\underset{\sim}{b}=\underset{\sim}{i}+2 \underset{\sim}{j}+2 \underset{\sim}{k} . \quad 2$ marks
\qquad
\qquad
\qquad
\qquad
b. $\quad O P Q$ is a semicircle of radius a with equation $y=\sqrt{a^{2}-(x-a)^{2}} . P(x, y)$ is a point on the semicircle $O P Q$, as shown below.

i. Express the vectors $\overrightarrow{O P}$ and $\overrightarrow{Q P}$ in terms of $a, x, y, \underset{\sim}{\mathrm{i}}$ and $\underset{\sim}{\mathrm{j}}$, where $\underset{\sim}{\mathrm{i}}$ is a unit vector in the direction of the positive x-axis and $\underset{\sim}{\mathrm{j}}$ is a unit vector in $\tilde{\text { the direction of the positive }}$ y-axis.
\qquad
\qquad
\qquad
ii. Hence, using the vector scalar (dot) product, determine whether $\overrightarrow{O P}$ is perpendicular to $\overrightarrow{Q P}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 7 (3 marks)

A curve has equation $x \cos (x+y)=\frac{\pi}{48}$.
Find the gradient of the curve at the point $\left(\frac{\pi}{24}, \frac{7 \pi}{24}\right)$. Give your answer in the form $\frac{a \sqrt{b}-\pi}{\pi}$, where
$a, b \in Z$.
\qquad

Question 8 (4 marks)
A body moves in a straight line so that when its displacement from a fixed origin O is x metres, its acceleration, a, is $-4 x \mathrm{~ms}^{-2}$. The body accelerates from rest and its velocity, v, is equal to $-2 \mathrm{~ms}^{-1}$ as it passes through the origin. The body then comes to rest again.

Find v in terms of x for this interval.

Question 9 (4 marks)
Given that $f^{\prime}(x)=\frac{\cos (2 x)}{\sin ^{3}(2 x)}$ and $f\left(\frac{\pi}{8}\right)=\frac{3}{4}$, find $f(x)$.

Question 10 (6 marks)
Let $f(x)=\sec (4 x)$.
a. Sketch the graph of f for $x \in\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ on the set of axes below. Label any asymptotes with their equations and label any turning points and the endpoints with their coordinates.

3 marks

b. The graph of $y=f(x)$ for $x \in\left[-\frac{\pi}{24}, \frac{\pi}{48}\right]$ is rotated about the x-axis to form a solid of
revolution. Find the volume of this solid. Give your answer in the form $\frac{(a-\sqrt{b}) \pi}{c}$, where $a, b, c \in R$. 3 marks
\qquad

Victorian Certificate of Education 2022

SPECIALIST MATHEMATICS
 Written examination 1

FORMULA SHEET

Instructions

This formula sheet is provided for your reference.
A question and answer book is provided with this formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Specialist Mathematics formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b) h$
curved surface area of a cylinder	$2 \pi r h$
volume of a cylinder	$\pi r^{2} h$
volume of a cone	$\frac{1}{3} \pi r^{2} h$
volume of a pyramid	$\frac{1}{3} A h$
volume of a sphere	$\frac{4}{3} \pi r^{3}$
area of a triangle	$\frac{1}{2} b c \sin (A)$
sine rule	$\frac{a}{\sin (A)}=\frac{b}{\sin (B)}=\frac{c}{\sin (C)}$
cosine rule	$c^{2}=a^{2}+b^{2}-2 a b \cos (C)$

Circular functions

$\cos ^{2}(x)+\sin ^{2}(x)=1$	
$1+\tan ^{2}(x)=\sec ^{2}(x)$	$\cot ^{2}(x)+1=\operatorname{cosec}^{2}(x)$
$\sin (x+y)=\sin (x) \cos (y)+\cos (x) \sin (y)$	$\cos (x-y)=\sin (x) \cos (y)-\cos (x) \sin (y)$
$\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)$	$\tan (x-y)=\frac{\tan (x)-\tan (y)}{1+\tan (x) \tan (y)}$
$\tan (x+y)=\frac{\tan (x)+\tan (y)}{1-\tan (x) \tan (y)}$	
$\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)=2 \cos ^{2}(x)-1=1-2 \sin ^{2}(x)$	
$\sin (2 x)=2 \sin (x) \cos (x)$	$\tan (2 x)=\frac{2 \tan (x)}{1-\tan (x)}$

Circular functions - continued

Function	$\sin ^{-1}$ or \arcsin	$\cos ^{-1}$ or \arccos	$\tan ^{-1}$ or \arctan
Domain	$[-1,1]$	$[-1,1]$	R
Range	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$	$[0, \pi]$	$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Algebra (complex numbers)

$z=x+i y=r(\cos (\theta)+i \sin (\theta))=r \operatorname{cis}(\theta)$	
$\|z\|=\sqrt{x^{2}+y^{2}}=r$	$-\pi<\operatorname{Arg}(z) \leq \pi$
$z_{1} z_{2}=r_{1} r_{2} \operatorname{cis}\left(\theta_{1}+\theta_{2}\right)$	$\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} \operatorname{cis}\left(\theta_{1}-\theta_{2}\right)$
$z^{n}=r^{n} \operatorname{cis}(n \theta)($ de Moivre's theorem $)$	

Probability and statistics

for random variables X and Y	$\mathrm{E}(a X+b)=a \mathrm{E}(X)+b$ $\mathrm{E}(a X+b Y)=a \mathrm{E}(X)+b \mathrm{E}(Y)$ $\operatorname{var}(a X+b)=a^{2} \operatorname{var}(X)$
for independent random variables X and Y	
$\operatorname{var}(a X+b Y)=a^{2} \operatorname{var}(X)+b^{2} \operatorname{var}(Y)$	
approximate confidence interval for μ	$\left(\bar{x}-z \frac{s}{\sqrt{n}}, \bar{x}+z \frac{s}{\sqrt{n}}\right)$

Calculus

$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$	$\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c, n \neq-1$
$\frac{d}{d x}\left(e^{a x}\right)=a e^{a x}$	$\int e^{a x} d x=\frac{1}{a} e^{a x}+c$
$\frac{d}{d x}\left(\log _{e}(x)\right)=\frac{1}{x}$	$\int \frac{1}{x} d x=\log _{e}\|x\|+c$
$\frac{d}{d x}(\sin (a x))=a \cos (a x)$	$\int \sin (a x) d x=-\frac{1}{a} \cos (a x)+c$
$\frac{d}{d x}(\cos (a x))=-a \sin (a x)$	$\int \cos (a x) d x=\frac{1}{a} \sin (a x)+c$
$\frac{d}{d x}(\tan (a x))=a \sec ^{2}(a x)$	$\int \sec ^{2}(a x) d x=\frac{1}{a} \tan (a x)+c$
$\frac{d}{d x}\left(\sin ^{-1}(x)\right)=\frac{1}{\sqrt{1-x^{2}}}$	$\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+c, a>0$
$\frac{d}{d x}\left(\cos ^{-1}(x)\right)=\frac{-1}{\sqrt{1-x^{2}}}$	$\int \frac{-1}{\sqrt{a^{2}-x^{2}}} d x=\cos ^{-1}\left(\frac{x}{a}\right)+c, a>0$
$\frac{d}{d x}\left(\tan ^{-1}(x)\right)=\frac{1}{1+x^{2}}$	$\int \frac{a}{a^{2}+x^{2}} d x=\tan ^{-1}\left(\frac{x}{a}\right)+c$
	$\int(a x+b)^{n} d x=\frac{1}{a(n+1)}(a x+b)^{n+1}+c, n \neq-1$
	$\int(a x+b)^{-1} d x=\frac{1}{a} \log _{e}\|a x+b\|+c$
product rule	$\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
quotient rule	$\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
chain rule	$\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$
Euler's method	If $\frac{d y}{d x}=f(x), x_{0}=a$ and $y_{0}=b$, then $x_{n+1}=x_{n}+h$ and $y_{n+1}=y_{n}+h f\left(x_{n}\right)$
acceleration	$a=\frac{d^{2} x}{d t^{2}}=\frac{d v}{d t}=v \frac{d v}{d x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)$
arc length	$\int_{x_{1}}^{x_{2}} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x \text { or } \int_{t_{1}}^{t_{2}} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t$

Vectors in two and three dimensions

$\underset{\sim}{\mathrm{r}}=x \underset{\sim}{\mathrm{i}}+\underset{\sim}{\mathrm{j}}+\underset{\sim}{\mathrm{j}}$
$\|\underset{\sim}{\mathrm{r}}\|=\sqrt{x^{2}+y^{2}+z^{2}}=r$
$\underset{\sim}{\underset{\sim}{\mathrm{r}}}=\frac{d \underset{\sim}{\mathrm{r}}}{d t}=\frac{d x}{d t} \underset{\sim}{\mathrm{i}}+\frac{d y}{d t} \mathrm{j}+\frac{d z}{d t} \underset{\sim}{\mathrm{k}}$
${\underset{\sim}{r}}_{1} \cdot \sim_{\sim}^{r} 2=r_{1} r_{2} \cos (\theta)=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$

Mechanics

momentum	$\underset{\sim}{p}=m \underset{\sim}{v}$
equation of motion	$\underset{\sim}{\mathrm{p}}=m \underset{\sim}{\mathrm{a}}$

