

Victorian Certificate of Education 2022

SUPERVISOR TO ATTACH PROCESSING LABEL HERE

Letter

STUDENT NUMBER

SPECIALIST MATHEMATICS Written examination 1

Friday 4 November 2022

Reading time: 9.00 am to 9.15 am (15 minutes) Writing time: 9.15 am to 10.15 am (1 hour)

QUESTION AND ANSWER BOOK

Structure of book

1	Number of	Number of questions	Number of
	questions	to be answered	marks
	10	10	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 13 pages
- Formula sheet
- Working space is provided throughout the book.

Instructions

- Write your **student number** in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.
- All written responses must be in English.

At the end of the examination

• You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

	Instructions	
А	nswer all questions in the spaces provided.	
U	nless otherwise specified, an exact answer is required to a question.	
Ir	questions where more than one mark is available, appropriate working must be shown.	
U	nless otherwise indicated, the diagrams in this book are not drawn to scale.	
Т	ake the acceleration due to gravity to have magnitude $g \text{ ms}^{-2}$, where $g = 9.8$	
	estion 1 (3 marks)	
Cor	sider the equation $p(z) = z^2 + 6iz - 25, z \in C$.	
a.	Express $p(z)$ in the form $p(z) = (z + ai)^2 + b$, where $a, b \in R$.	1 mark
b.	Hence, or otherwise, find the solutions of the equation $p(z) = 0$.	2 marks

TURN OVER

Question 2 (3 marks)

Solve the differential equation $\frac{dy}{dx} = -x\sqrt{4-y^2}$ given that y(2) = 0. Give your answer in the form y = f(x).

Question 3 (4 marks)

The time taken by a coffee machine to dispense a cup of coffee varies normally with a mean of 10 seconds and a standard deviation of 1.5 seconds.

a. Find the probability that more than 34 seconds is needed to dispense a total of four cups of coffee. Give your answer correct to two decimal places.

2 marks

b.

This question has been redacted following the findings of the Independent Review into the VCAA's Examination-Setting Policies, Processes and Procedures for the VCE.

4

Question 4 (4 marks)

Find
$$\int \frac{3x^2 + 4x + 12}{x(x^2 + 4)} dx$$
.

Question 5 (3 marks)

A body of mass 10 kg, which is initially at rest, slides down a smooth inclined plane, as shown in the diagram below. The plane is inclined at an angle θ to the horizontal, where $\tan \theta = \frac{1}{3}$.

Find the speed of the body after the body has been in motion for two seconds. a.

2 marks

4 ш

After the body has been in motion for two seconds, a constant braking force, R newtons, is b. applied to the body parallel to the plane so that the body has constant velocity.

Find the value of *R*.

1 mark

Question 6 (6 marks)

Find the cosine of the acute angle between the vectors $\mathbf{a} = 2\mathbf{i} - 3\mathbf{j} + 6\mathbf{k}$ and $\mathbf{b} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$. 2 marks a.

b. *OPQ* is a semicircle of radius *a* with equation $y = \sqrt{a^2 - (x - a)^2}$. *P*(*x*, *y*) is a point on the semicircle *OPQ*, as shown below.

i. Express the vectors \overrightarrow{OP} and \overrightarrow{QP} in terms of a, x, y, \underline{i} and \underline{j} , where \underline{i} is a unit vector in the direction of the positive x-axis and \underline{j} is a unit vector in the direction of the positive y-axis.

1 mark

ii. Hence, using the vector scalar (dot) product, determine whether \overrightarrow{OP} is perpendicular to \overrightarrow{QP} .

3 marks

TURN OVER

Question 7 (3 marks)

A curve has equation $x\cos(x+y) = \frac{\pi}{48}$. Find the gradient of the curve at the point $\left(\frac{\pi}{24}, \frac{7\pi}{24}\right)$. Give your answer in the form $\frac{a\sqrt{b}-\pi}{\pi}$, where $a, b \in \mathbb{Z}$.

10

Question 8 (4 marks)

A body moves in a straight line so that when its displacement from a fixed origin O is x metres, its acceleration, a, is $-4x \text{ ms}^{-2}$. The body accelerates from rest and its velocity, v, is equal to -2 ms^{-1} as it passes through the origin. The body then comes to rest again.

Find v in terms of x for this interval.

Question 9 (4 marks)

Given that $f'(x) = \frac{\cos(2x)}{\sin^3(2x)}$ and $f\left(\frac{\pi}{8}\right) = \frac{3}{4}$, find f(x).

Question 10 (6 marks)

Let
$$f(x) = \sec(4x)$$
.

a. Sketch the graph of *f* for $x \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ on the set of axes below. Label any asymptotes with their equations and label any turning points and the endpoints with their coordinates.

3 marks

12

- The graph of y = f(x) for $x \in \left[-\frac{\pi}{24}, \frac{\pi}{48}\right]$ is rotated about the *x*-axis to form a solid of revolution. b.
 - narks

and the volume of this solid. Give your answer in the form $\frac{(a-\sqrt{b})\pi}{c}$, where $a, b, c \in R$.		
a the volume of this solid. Give your answer in the r	C	, where $u, v, c \in K$.

Victorian Certificate of Education 2022

SPECIALIST MATHEMATICS

Written examination 1

FORMULA SHEET

Instructions

This formula sheet is provided for your reference. A question and answer book is provided with this formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Specialist Mathematics formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$
curved surface area of a cylinder	$2\pi rh$
volume of a cylinder	$\pi r^2 h$
volume of a cone	$\frac{1}{3}\pi r^2 h$
volume of a pyramid	$\frac{1}{3}Ah$
volume of a sphere	$\frac{4}{3}\pi r^3$
area of a triangle	$\frac{1}{2}bc\sin(A)$
sine rule	$\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$
cosine rule	$c^2 = a^2 + b^2 - 2ab\cos(C)$

Circular functions

$\cos^2(x) + \sin^2(x) = 1$	
$1 + \tan^2(x) = \sec^2(x)$	$\cot^2(x) + 1 = \csc^2(x)$
$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$	$\sin(x - y) = \sin(x)\cos(y) - \cos(x)\sin(y)$
$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$	$\cos(x - y) = \cos(x)\cos(y) + \sin(x)\sin(y)$
$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$	$\tan(x-y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$
$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$	
$\sin(2x) = 2\sin(x)\cos(x)$	$\tan\left(2x\right) = \frac{2\tan\left(x\right)}{1-\tan^{2}\left(x\right)}$

Circular functions – continued

Function	\sin^{-1} or arcsin	\cos^{-1} or arccos	\tan^{-1} or arctan
Domain	[-1, 1]	[-1, 1]	R
Range	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	$[0,\pi]$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

Algebra (complex numbers)

$z = x + iy = r(\cos(\theta) + i\sin(\theta)) = r\cos(\theta)$	
$\left z\right = \sqrt{x^2 + y^2} = r$	$-\pi < \operatorname{Arg}(z) \le \pi$
$z_1 z_2 = r_1 r_2 \operatorname{cis} \left(\theta_1 + \theta_2\right)$	$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$
$z^n = r^n \operatorname{cis}(n\theta)$ (de Moivre's theorem)	

Probability and statistics

for random variables X and Y	E(aX+b) = aE(X) + b E(aX+bY) = aE(X) + bE(Y) $var(aX+b) = a^{2}var(X)$	
for independent random variables X and Y	$\operatorname{var}(aX+bY) = a^2\operatorname{var}(X) + b^2\operatorname{var}(Y)$	
approximate confidence interval for μ	$\left(\overline{x} - z\frac{s}{\sqrt{n}}, \ \overline{x} + z\frac{s}{\sqrt{n}}\right)$	
distribution of sample mean \overline{X}	mean $E(\overline{X}) = \mu$ variance $var(\overline{X}) = \frac{\sigma^2}{n}$	

Calculus

$$\begin{split} \frac{d}{dx}(x^n) &= nx^{n-1} \qquad \int x^n dx = \frac{1}{n+1}x^{n+1} + c, n \neq -1 \\ \frac{d}{dx}(e^{xx}) &= ae^{ax} \qquad \int e^{xx} dx = \frac{1}{a}e^{xx} + c \\ \frac{d}{dx}(\log_e(x)) &= \frac{1}{x} \qquad \int \frac{1}{x} dx = \log_e|x| + c \\ \frac{d}{dx}(\sin(ax)) &= a\cos(ax) \qquad \int \sin(ax) dx = -\frac{1}{a}\cos(ax) + c \\ \frac{d}{dx}(\cos(ax)) &= -a\sin(ax) \qquad \int \cos(ax) dx = \frac{1}{a}\sin(ax) + c \\ \frac{d}{dx}(\cos(ax)) &= -a\sin(ax) \qquad \int \cos(ax) dx = \frac{1}{a}\sin(ax) + c \\ \frac{d}{dx}(\tan(ax)) &= a\sec^2(ax) \qquad \int \sec^2(ax) dx = \frac{1}{a}\tan(ax) + c \\ \frac{d}{dx}(\sin^{-1}(x)) &= \frac{1}{\sqrt{1-x^2}} \qquad \int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1}(\frac{x}{a}) + c, a > 0 \\ \frac{d}{dx}(\cos^{-1}(x)) &= \frac{-1}{\sqrt{1-x^2}} \qquad \int \frac{-1}{\sqrt{a^2 - x^2}} dx = \tan^{-1}(\frac{x}{a}) + c, a > 0 \\ \frac{d}{dx}(\tan^{-1}(x)) &= \frac{1}{1+x^2} \qquad \int \frac{a}{a^2 + x^2} dx = \tan^{-1}(\frac{x}{a}) + c, a > 0 \\ \frac{d}{dx}(\tan^{-1}(x)) &= \frac{1}{1+x^2} \qquad \int \frac{a}{a^2 + x^2} dx = \tan^{-1}(\frac{x}{a}) + c, a > 0 \\ \frac{d}{dx}(\tan^{-1}(x)) &= \frac{1}{1+x^2} \qquad \int \frac{a}{a^2 + x^2} dx = \tan^{-1}(\frac{x}{a}) + c, a > 0 \\ \frac{d}{dx}(\tan^{-1}(x)) &= \frac{1}{1+x^2} \qquad \int \frac{a}{a^2 + x^2} dx = \tan^{-1}(\frac{x}{a}) + c, a > 0 \\ \frac{d}{dx}(\tan^{-1}(x)) &= \frac{1}{1+x^2} \qquad \int \frac{a}{a^2 + x^2} dx = \tan^{-1}(\frac{x}{a}) + c, a > 0 \\ \frac{d}{dx}(\tan^{-1}(x)) &= \frac{1}{a(x+b)^n} dx = \frac{1}{a(n+1)}(ax+b)^{n+1} + c, n \neq -1 \\ \frac{d}{dx}(\tan^{-1}(x)) &= \frac{1}{a(x+b)^{-1}} dx = \frac{1}{a}\log_e |ax+b| + c \\ \frac{d}{dx}(uv) &= u \frac{dv}{dx} + v \frac{du}{dx} \\ \frac{quotient}{ule} \qquad \frac{d}{dx}(\frac{u}{v}) &= \frac{v \frac{dv}{dx}}{v^2} \\ \frac{du}{dx} = \frac{dy}{u} \frac{du}{dx} \\ \hline Euler's method \qquad Ir \frac{dy}{dx} = f(x), x_0 - a a dy_0 - b, then x_{n+1} = x_n + h and y_{n+1} = y_n + hf(x_n) \\ acceleration \qquad a = \frac{d^2x}{dt^2} = \frac{dv}{dt} = \frac{v \frac{dv}{dx}} = \frac{d}{dx} (\frac{1}{2}v^2) \\ arc length \qquad \int_{x_h}^{x_h} \sqrt{1 + (f'(x))^2} dx \ or \int_{x_h}^{x_h} \sqrt{(x'(t))^2 + (y'(t))^2} dt \end{cases}$$

Vectors in two and three dimensions

$$\mathbf{r} = x\mathbf{j} + y\mathbf{j} + z\mathbf{k}$$

$$|\mathbf{r}| = \sqrt{x^2 + y^2 + z^2} = r$$

$$\mathbf{\dot{r}} = \frac{d\mathbf{r}}{dt} = \frac{dx}{dt}\mathbf{i} + \frac{dy}{dt}\mathbf{j} + \frac{dz}{dt}\mathbf{k}$$

$$\mathbf{r}_1 \cdot \mathbf{r}_2 = r_1r_2\cos(\theta) = x_1x_2 + y_1y_2 + z_1z_2$$

Mechanics

momentum	$\tilde{\mathbf{p}} = m\tilde{\mathbf{y}}$
equation of motion	$\mathbf{R} = m\mathbf{a}$