VCE Mathematical Methods

Written examination 1 - End of year

Sample questions

These sample questions are intended to demonstrate how new aspects of Units 3 and 4 of VCE Mathematical Methods may be examined in written examination 1. They do not constitute a full examination paper.

Question 1 (5 marks)
Let $f:[-3,-2) \cup(-2, \infty) \rightarrow R, f(x)=1+\frac{1}{x+2}$.
a. On the axes below, sketch the graph of f. Label any asymptotes with their equations, and endpoints and axial intercepts with their coordinates.

b. \quad Find the values of x for which $f(x) \leq 2$.
\qquad
\qquad
\qquad
\qquad
\qquad

Question 2 (5 marks)
Consider the functions f and g, where

$$
\begin{aligned}
& f: R \rightarrow R, f(x)=x^{2}-9 \\
& g:[0, \infty) \rightarrow R, g(x)=\sqrt{x}
\end{aligned}
$$

a. State the range of f.
\qquad
\qquad
b. Determine the rule for the equation and state the domain of the function $f \circ g$.
\qquad
\qquad
\qquad
c. Let h be the function $h: D \rightarrow R, h(x)=x^{2}-9$.

Determine the maximal domain, D, such that $g \circ h$ exists.
\qquad
\qquad
\qquad
\qquad

Question 3 (3 marks)
Find the general solution for $2 \sin (x)=\tan (x)$ for $x \in R$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 4 (4 marks)

Consider the simultaneous equations below, where a and b are real constants.

$$
\begin{aligned}
& (a+3) x+9 y=3 b \\
& 2 x+a y=5
\end{aligned}
$$

Find the values of a and b for which the simultaneous equations have no solutions.
\qquad

Question 5 (6 marks)
Let $f: R \rightarrow R$, where $f(x)=2-x^{2}$.
a. Calculate the average rate of change of f between $x=-1$ and $x=1$.
\qquad
\qquad
b. Calculate the average value of f between $x=-1$ and $x=1$.
\qquad
\qquad
\qquad
\qquad
c. Four trapeziums of equal width are used to approximate the area between the functions $f(x)=2-x^{2}$ and the x-axis from $x=-1$ to $x=1$.
The heights of the left and right edges of each trapezium are the values of $y=f(x)$, as shown in the graph below.

Find the total area of the four trapeziums.
\qquad
\qquad
\qquad
\qquad
\qquad

Question 6 (3 marks)

Newton's method is used to estimate the x-intercept of the function $f(x)=\frac{1}{3} x^{3}+2 x+4$.
a. Verify that $f(-1)>0$ and $f(-2)<0$. 1 mark
\qquad
\qquad
\qquad
\qquad
b. Using an initial estimate of $x_{0}=-1$, find the value of x_{1}.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 7 (3 marks)

The duration of telemarketing calls to mobile phone users is a continuous random variable T minutes, with probability density function

$$
f(t)= \begin{cases}\frac{2}{5} e^{-\frac{2}{5} t} & t \geq 0 \\ 0 & \text { elsewhere }\end{cases}
$$

Find the value of k such that 90% of telemarketing calls last less than k minutes. Express your answer in the form $\frac{a}{b} \log _{e}(c)$, where a, b and c are positive integers.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

