

Victorian Certificate of Education 2011

SUPERVISOR TO ATTACH PROCESSING LABEL HERE

|         | STUDEN | Γ NUMBE | <b>R</b> |  |  |  | Letter |
|---------|--------|---------|----------|--|--|--|--------|
| Figures |        |         |          |  |  |  |        |
| Words   |        |         |          |  |  |  |        |

# VCE VET ENGINEERING STUDIES Written examination

### Monday 21 November 2011

Reading time: 9.00 am to 9.15 am (15 minutes)

Writing time: 9.15 am to 10.45 am (1 hour 30 minutes)

## **QUESTION AND ANSWER BOOK**

#### Structure of book

| Section | Number of questions | Number of questions<br>to be answered | Number of<br>marks |
|---------|---------------------|---------------------------------------|--------------------|
| A       | 15                  | 15                                    | 15                 |
| В       | 2                   | 2                                     | 15                 |
| C       | 1                   | 1                                     | 15                 |
| D       | 9                   | 9                                     | 15                 |
| Е       | 4                   | 4                                     | 40                 |
|         |                     |                                       | Total 100          |

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, a protractor, a set square and aids for curve sketching.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or white out liquid/tape.
- A scientific calculator is allowed in this examination.

## Materials supplied

- Question and answer book of 32 pages.
- Answer sheet for multiple-choice questions.

#### **Instructions**

- Write your **student number** in the space provided above on this page.
- Check that your **name** and **student number** as printed on your answer sheet for multiple-choice questions are correct, **and** sign your name in the space provided to verify this.
- All written responses must be in English.

#### At the end of the examination

• Place the answer sheet for multiple-choice questions inside the front cover of this book.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

## SECTION A – VBN 771 Apply electrotechnology principles in an engineering work environment

#### **Instructions for Section A**

Answer all questions in pencil on the answer sheet provided for multiple-choice questions.

Choose the response that is **correct** or that **best answers** the question.

A correct answer scores 1, an incorrect answer scores 0.

Marks will **not** be deducted for incorrect answers.

No marks will be given if more than one answer is completed for any question.

#### **Question 1**

How many milliamps are equal to 7.2 amps?

- **A.** 0.72
- **B.** 720
- **C.** 7200
- **D.** 72 000

#### **Question 2**

Which of the following currents would cause the most severe electric shock when flowing through a person to earth?

- **A.**  $350 \, \mu A$
- **B.** 35 mA
- **C.** 0.35 A
- **D.** 0.035 A

#### **Ouestion 3**

An electric drill has the symbol shown in Figure 1 on its case.



Figure 1

The symbol means the drill

- **A.** must be earthed.
- **B.** is not insulated.
- **C.** is single insulated.
- **D.** is double insulated.

#### **Question 4**

Which effect of an electric current can cause corrosion of metals?

- **A.** heating
- **B.** lighting
- C. chemical
- **D.** magnetic

Figure 2 shows a voltmeter which will be used to measure the supply voltage under no-load conditions.

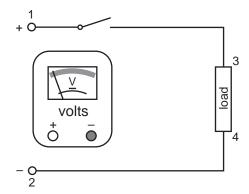



Figure 2

Where should the positive and negative leads of the voltmeter be connected?

- **A.** across 1 and 3 with the switch open
- **B.** across 3 and 4 with the switch open
- C. across 1 and 2 with the switch open
- **D.** across 3 and 4 with the switch closed

#### **Question 6**

Which one of the following is an example of an overload?

- **A.** three 10 amp fan heaters running on the same 16 amp fuse
- **B.** water between the contacts of a 10 amp socket outlet
- C. a person in contact between a live wire and earth
- **D.** cutting a live cable with insulated pliers

Use Figure 3 to answer Questions 7–9.

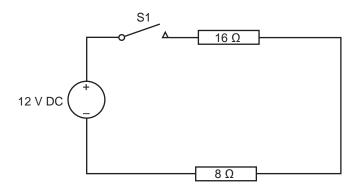



Figure 3

#### **Question 7**

How much current will flow in the circuit shown in Figure 3 when the switch is **open**?

- **A.** 8 A
- **B.** 16 A
- **C.** 24 A
- **D.** No current will flow.

#### **Question 8**

If DC voltmeter leads are placed across S1 in Figure 3, what reading will be obtained?

- **A.** 0 volts
- **B.** 8 volts
- **C.** 12 volts
- **D.** 24 volts

## **Question 9**

The circuit in Figure 3 is commonly referred to as a

- A. series circuit.
- **B.** parallel circuit.
- C. complex circuit.
- **D.** series/parallel circuit.

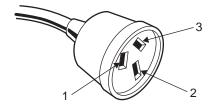



Figure 4

On the extension lead socket shown in Figure 4, the **correct active** terminal position is

- **A.** terminal 1 or 2, depending on the polarity of the supply voltage.
- **B.** terminal 1 only.
- C. terminal 2 only.
- **D.** terminal 3 only.

#### **Question 11**

The correct colour(s) for the earth wire on a 230 volt extension lead is

- A. green.
- **B.** green/blue.
- C. green/brown.
- **D.** green/yellow.

#### **Question 12**



Figure 5

Which electrical component is represented by the symbol shown in Figure 5?

- A. capacitor
- **B.** transformer
- C. power diode
- **D.** fixed resistor

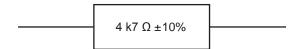



Figure 6

What are the upper and lower values of the power resistor shown in Figure 6?

- **A.** 4.23 to 5.17 ohms
- **B.** 42.3 to 51.7 ohms
- **C.** 423 to 517 ohms
- **D.** 4230 to 5170 ohms

#### **Question 14**

An electric toaster draws 0.25 amperes at 250 volts.

Which of the following is the power rating of the toaster?

- **A.** 62.5 W
- **B.** 100 W
- **C.** 250 W
- **D.** 1000 W

#### **Question 15**

When an electrical current flows through a conductor it causes a

- **A.** chemical reaction within the conductor.
- **B.** magnetic field around the conductor.
- **C.** decrease in conductor temperature.
- **D.** reduction in conductor resistance.

## **CONTINUES OVER PAGE**

## SECTION B – VBN 773 Produce basic engineering sketches and drawings

## **Instructions for Section B**

Answer all questions in the spaces provided. All dimensions are in mm (millimetres).

Figure 1 shows an isometric view of a stepped block.

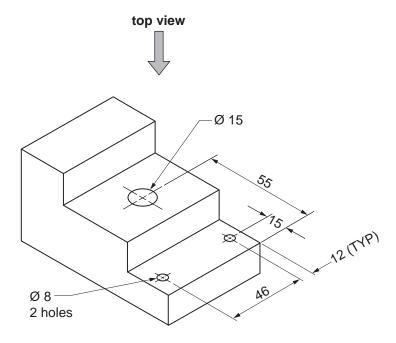



Figure 1

On the sketch below complete the top, side and end views of the stepped block shown in Figure 1.

- Use conventional drawing systems.
- Show views in third-angle projection.
- Show all hidden detail.
- Dimension the **size** and **position** of the holes in the top view. No other dimensions are required.

|  | 1   |  |
|--|-----|--|
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  | J   |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  | J I |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |
|  |     |  |

6 marks

Figure 2 shows a detailed drawing of a clamp block.

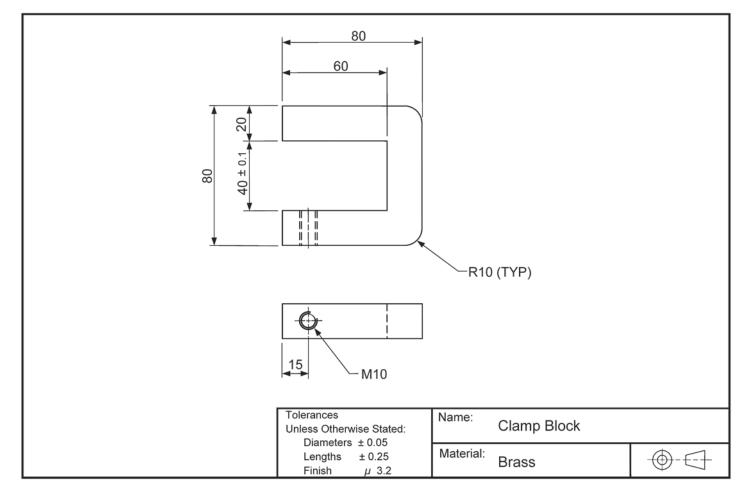
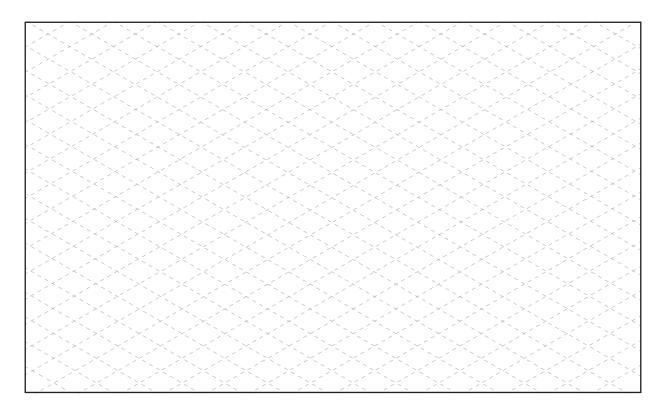




Figure 2

| Qu | estion 2                                                                              |         |
|----|---------------------------------------------------------------------------------------|---------|
| a. | What are the maximum and minimum sizes allowed for the 40 mm slot in the clamp block? |         |
|    | maximum                                                                               |         |
|    | minimum                                                                               | 2       |
| b. | The R10 in the clamp block has (TYP) after it. What does (TYP) indicate?              | 2 marks |
|    |                                                                                       | 1 mark  |

**c.** In the space provided below, sketch an isometric view of the clamp block shown in Figure 2. Do not dimension the drawing.



3 marks

Figure 3 shows a drawing of a spacer bar.

**d.** Complete the **sectioned** side view, showing the holes going through the spacer bar.

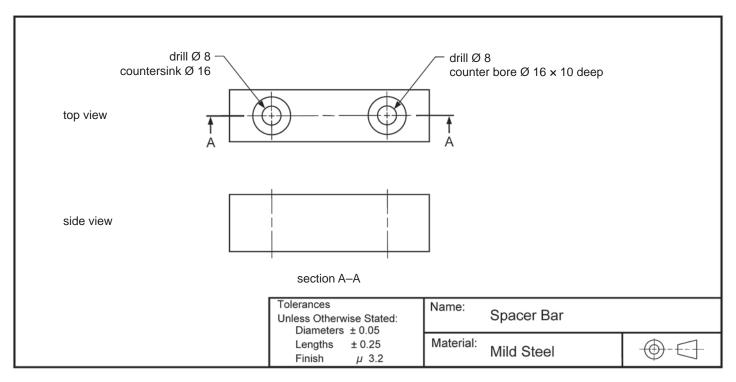



Figure 3

3 marks

Total 15 marks

END OF SECTION B TURN OVER

## SECTION C – VBN 776 Using basic engineering concepts to plan the manufacture of engineering components

#### **Instructions for Section C**

Answer all questions in the spaces provided. All dimensions are in mm (millimetres).

Figure 1 shows a detailed drawing of a plumb bob.

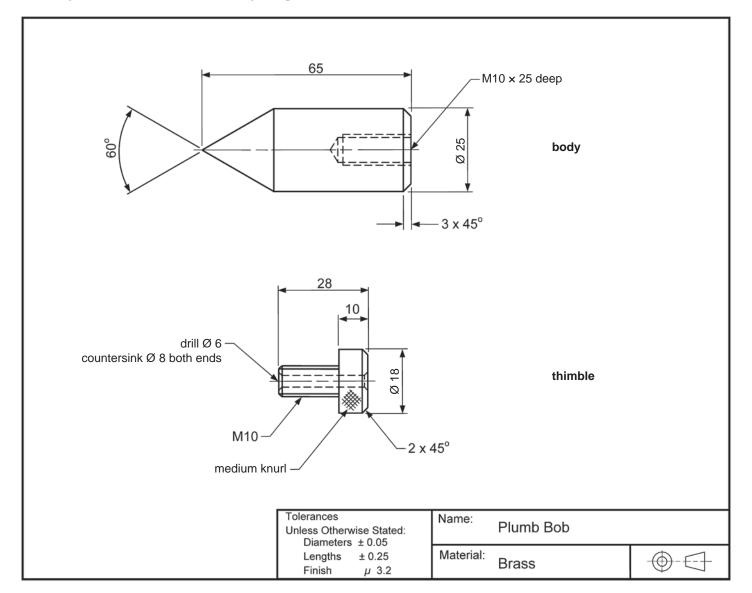



Figure 1

#### **Question 1**

**a.** At what angle is the top slide on the lathe set when turning the point of the plumb bob body?

1 mark

Figure 2

**b.** Use the thread chart shown in Figure 2 to determine the drill required for the M10 thread in the plumb bob body.

1 mark



The three taps shown will be used to tap the M10 thread in the plumb bob body.

**c.** Which of the taps should be used last? Give a reason for your answer.

2 marks



Figure 3

**d.** What is the name of the tool shown in Figure 3?

|            | 12.50         |                                                      |
|------------|---------------|------------------------------------------------------|
| A.<br>B.   | 10.35         |                                                      |
| <b>С.</b>  | 9.95          |                                                      |
| D.         | 8.50          |                                                      |
| Б.<br>Е.   | 8.00          |                                                      |
| <b>12.</b> | 0.00          |                                                      |
|            |               |                                                      |
|            |               |                                                      |
|            |               | 1 mark                                               |
| ne thin    | nble will be  | e made from a Ø18 piece of bar which is 300 mm long. |
| Co         | mplete the    | sequence of operations in order to make the thimble. |
|            | Cton          | Omoustion                                            |
|            | Step          | Operation                                            |
|            | 1             | Face and centre drill bar                            |
|            |               |                                                      |
|            |               |                                                      |
|            |               |                                                      |
|            |               |                                                      |
|            |               |                                                      |
|            |               |                                                      |
|            |               |                                                      |
|            |               |                                                      |
|            |               |                                                      |
|            |               |                                                      |
|            |               |                                                      |
|            |               | 5 marks                                              |
| W          |               | 5 marks                                              |
| Wh         | nat is the pu | 5 marks arpose of the knurl on the thimble?          |
| Wh         | nat is the pu |                                                      |

When the plumb bob, made to correct specifications, was assembled, the thimble would not screw all the way down, which resulted in a gap between the body and thimble as shown in Figure 4.

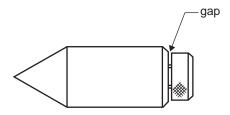



Figure 4

**h.** Describe what can be done to fix the gap.

2 marks

When another plumb bob was assembled, the thimble screwed in at an angle as shown in Figure 5.



Figure 5

i. What could have caused this?

1 mark

Total 15 marks

## SECTION D – VBN 777 Handle engineering materials

## **Instructions for Section D**

Answer all questions in the spaces provided.

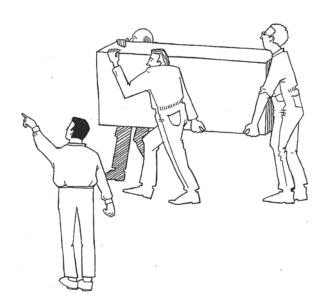



Figure 1

| Question | 1 |
|----------|---|
|----------|---|

| Qu   | estion 1                                                                                       |        |
|------|------------------------------------------------------------------------------------------------|--------|
| a.   | What type of lift is shown in Figure 1?                                                        |        |
| In I | Figure 1, the person at the front of the picture who is not lifting is the leader of the lift  | 1 mark |
| ını  | Figure 1, the person at the front of the picture who is not lifting is the leader of the lift. |        |
| b.   | State <b>one</b> responsibility this person has.                                               |        |
|      |                                                                                                |        |
|      |                                                                                                | 1 mark |

## Question 2 In engineering glo

| m e | ingineering, gloves are sometimes worn to protect the hands from injury.                                                                     |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------|
| a.  | Give one example of a task where it is recommended that gloves be worn.                                                                      |
|     | 1 mark                                                                                                                                       |
| b.  | Give one example where gloves must <b>not</b> be worn because they would be a safety hazard.                                                 |
|     | 1 mark                                                                                                                                       |
| Ou  | estion 3                                                                                                                                     |
|     | me <b>two</b> pieces of equipment that are commonly used to move heavy materials in engineering workshops that require a licence to operate. |
|     | 2 marks                                                                                                                                      |
| Qu  | estion 4                                                                                                                                     |
| Ais | les are intended to provide a safe path to move along people and materials.                                                                  |
| Des | scribe a situation that would create an unsafe aisle.                                                                                        |
|     |                                                                                                                                              |
|     | 1 marl                                                                                                                                       |

I mark

The following is a Material Safety Data Sheet (MSDS).

### MSDS – Material Safety Data Sheet

Product Name: THINNER

Recommended Use: Industrial Solvent

#### 1. HAZARDOUS IDENTIFICATION

Hazardous substance according to the criteria of Dangerous Goods

#### 2. FIRST AID MEASURES

#### **Inhalation:**

Remove from contaminated area. Apply artificial respiration if not breathing. Seek medical assistance.

### **Ingestion:**

If poisoning occurs, contact a doctor or poisons information centre. If swallowed, do not induce vomiting, give a glass of water.

#### Skin:

If skin contact occurs, remove contaminated clothing and wash skin thoroughly.

#### Eye:

If in eyes, hold eyes open, flood with water for at least 15 minutes and see a doctor.

#### 3. FIRE FIGHTING MEASURES

#### **Substantial Extinguishing Media:**

Use foam extinguisher.

#### **Specific Hazards:**

This product is extremely flammable. Vapours are heavier than air and will travel to low level areas.

#### 4. ACCIDENTAL RELEASE MEASURES

#### **Emergency Procedures:**

Thinner is a flammable liquid. Vapour may form explosive mixtures with air. Avoid heat and all ignition sources. Use only in well-ventilated areas. Product transfer and storage equipment must be earthed.

#### 5. HANDLING AND STORAGE

#### **Precautions for Safe Handling:**

Wear chemical goggles or face shield. Wear protective clothing as necessary to avoid skin contact. Wear chemical resistant gloves. This product is harmful if inhaled.

#### 6. PHYSICAL AND CHEMICAL PROPERTIES

**Appearance:** Clear, colourless, mobile liquid with hydrocarbon odour

**Boiling Point:** 80–110° C

**Solubility:** Miscible with water

Flash Point: 1

**Flammability:** HIGHLY FLAMMABLE. This product should be stored and used in a well-ventilated area

away from naked flames, sparks and other sources of ignition. Keep the container tightly

closed.

Water Foam Wet Chemical Carbon Dioxide Extinguisher Extinguisher Extinguisher Extinguisher **Question 5** Which one of the above fire extinguishers would be most suitable to use if thinner ignites? 1 mark **Question 6** Which one of the following safety signs would you expect to see displayed where drums of thinner are stored? В. C. D. E. FLAMMABLE **FLAMMABLE EXPLOSIVE** GOODS 1 mark **Question 7** What should you do if thinner is accidentally swallowed? 1 mark **Question 8** In a room where thinner is used frequently, a fan extractor is installed at ground level. Why is an extraction system for thinner more effective at ground level?

1 mark

The photo below shows a person pouring thinner from a 20 litre drum and a person using a grinder.



Apart from poor ventilation, list four specific safety hazards in this photo.

| 1 |  |  |  |
|---|--|--|--|
|   |  |  |  |
|   |  |  |  |
| 2 |  |  |  |
|   |  |  |  |
|   |  |  |  |
| 3 |  |  |  |
|   |  |  |  |
|   |  |  |  |
| 4 |  |  |  |
|   |  |  |  |
|   |  |  |  |

4 marks

Total 15 marks

## **CONTINUES OVER PAGE**

## SECTION E – VBN 778 Produce basic engineering components and products using fabrication and machining

### **Instructions for Section E**

Answer all questions in the spaces provided. All dimensions are in mm (millimetres).

Figure 1 shows an assembly drawing of a vice used for woodwork.

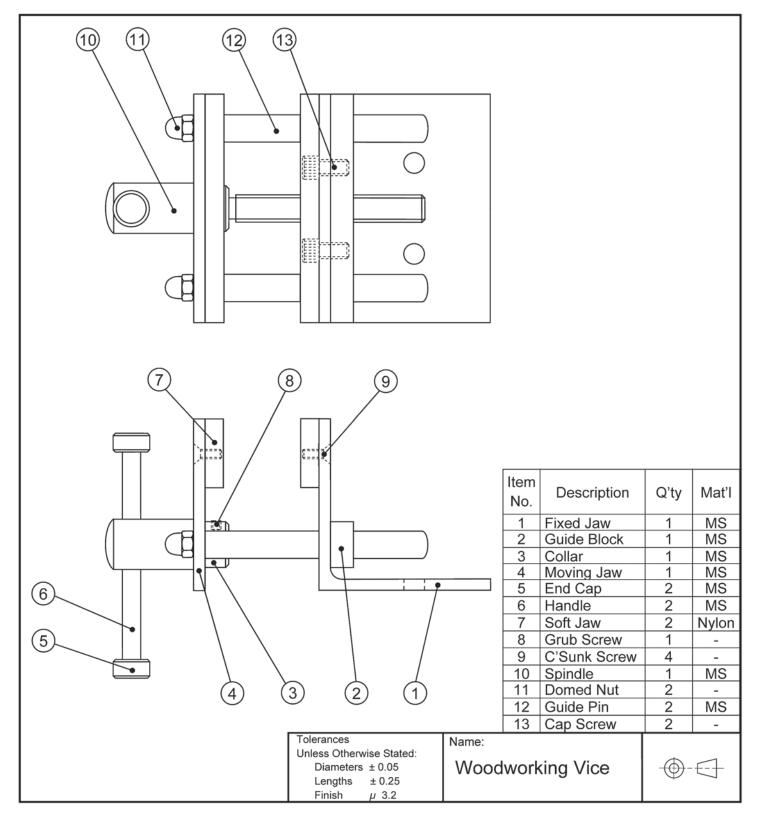



Figure 1

|                |                                          | 1 mark                                                    |
|----------------|------------------------------------------|-----------------------------------------------------------|
| List <b>tw</b> | vo hand tools needed to assemble the w   | voodworking vice.                                         |
|                |                                          | 1 mark                                                    |
| W/hot ic       | is likely to hannen if a countersunk ser | ew (item 9 in Figure 1) is overtightened during assembly? |

Figure 2 shows a detailed drawing of the fixed jaw. Question 2 relates to the manufacture of the fixed jaw.

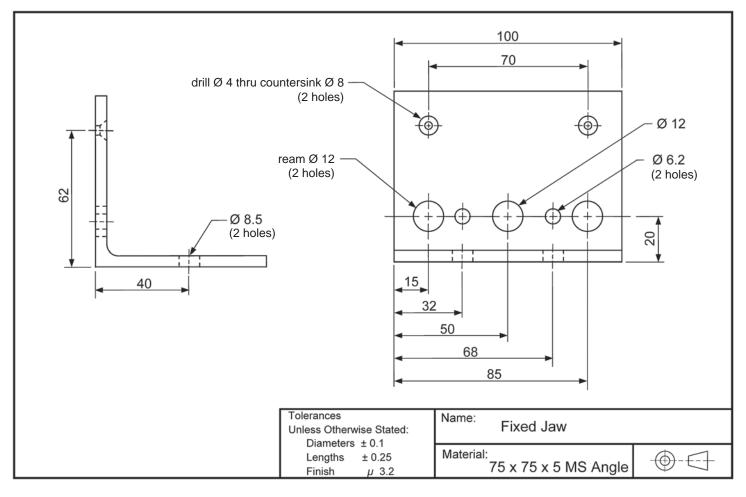


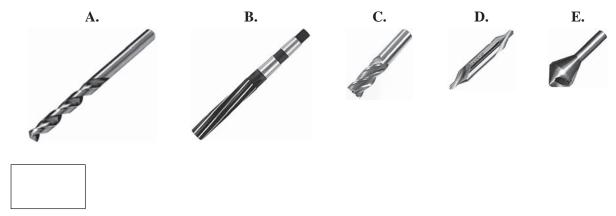

Figure 2

| a.  | Use an arrow to show a datum on the drawing in Figure 2.                                                |        |
|-----|---------------------------------------------------------------------------------------------------------|--------|
|     |                                                                                                         | 1 mark |
| A 1 | m length of 75 mm angle iron has been placed on the saw for cutting.                                    |        |
| b.  | How long should the material be cut to make the fixed jaw?                                              |        |
|     |                                                                                                         |        |
|     |                                                                                                         | 1 mark |
| The | e material for the fixed jaw has just been cut.                                                         |        |
| c.  | Describe <b>two</b> operations that need to be done to the material before it is ready for marking out. |        |
|     |                                                                                                         |        |
|     |                                                                                                         |        |
|     |                                                                                                         |        |

2 marks

The holes will be marked out using the marking tool shown in Figure 3.




|    |       | Figure 3                                                                                                                                   |
|----|-------|--------------------------------------------------------------------------------------------------------------------------------------------|
| d. | i.    | What is the name of the marking tool shown in Figure 3?                                                                                    |
|    | ii.   | Describe one check that should be done to the marking tool shown in Figure 3 to make sure that your marking out is accurate.               |
|    | holes | 1 + 1 = 2 marks in the fixed jaw and the guide block, in Figure 1 on page 22, need to be accurately lined up so that ch.                   |
| e. | i.    | If the holes in the guide block and the fixed jaw are not accurately lined up, how could this affect the operation of the vice?            |
|    | ii.   | Describe in detail how to make sure that the holes line up.                                                                                |
|    |       | 1 + 2 = 3  marks ted out lines on the angle iron are difficult to see.                                                                     |
| f. | Wha   | at can be done to the angle iron to make the lines easier to see?                                                                          |
|    |       | 1 mark                                                                                                                                     |
|    |       | Ils made from High Speed Steel (HSS) will be used to drill the holes in the fixed jaw. It is important drills are used at the correct rpm. |
| g. |       | at are the two major factors which determine the correct rpm of the drills?                                                                |
|    | 1     |                                                                                                                                            |
|    | 2     |                                                                                                                                            |

2 marks

**h.** Why are two of the  $\emptyset$  12 holes in the fixed jaw reamed and not drilled to size?

1 mark

i. Which of the tools shown below is a reamer?



1 mark

Figure 4 shows a detailed drawing of a spindle and collar. Question 3 relates to the manufacture of the spindle and collar.

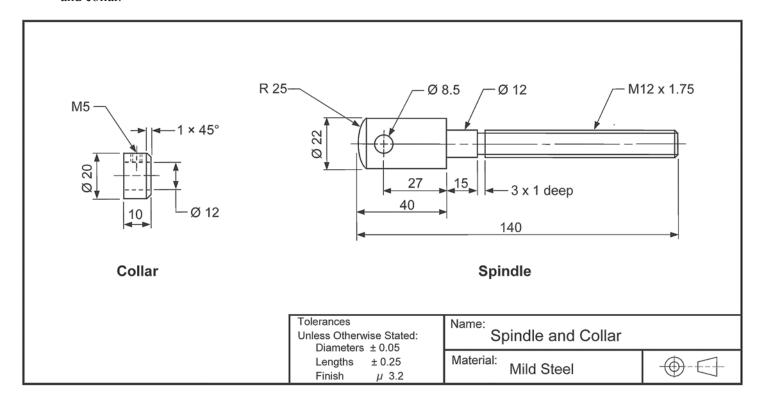



Figure 4

The collar shown in Figure 4 will be made out of a 400 mm long piece of Ø 22 mild steel bar.

**a.** List six tools you will need to make the collar.

1. \_\_\_\_\_

2. \_\_\_\_\_

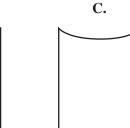
3. \_\_\_\_\_

4. \_\_\_\_\_

5. \_\_\_\_

6. \_\_\_\_\_

3 marks


The radius on the end of the spindle will be machined using a form tool.

**b.** Which of the following form tool shapes would be most suitable to machine the R25?

A.



В.



D.



E.



1 mark

The lathe shown in Figure 5 will be used to make the spindle.

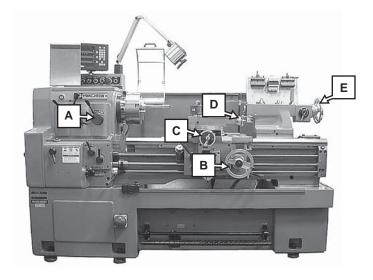



Figure 5

| c. | i.   | Which hand-wheel is used to face off the spindle?                                    |
|----|------|--------------------------------------------------------------------------------------|
|    |      |                                                                                      |
|    | ii.  | Which hand-wheel is used to feed the centre drill?                                   |
|    |      |                                                                                      |
|    | iii. | Which hand-wheel is used to feed the tool along the work when turning the diameters? |
|    |      |                                                                                      |
|    |      | 1 + 1 + 1 = 3 marks                                                                  |

Figure 6 shows a detailed drawing of a guide pin.

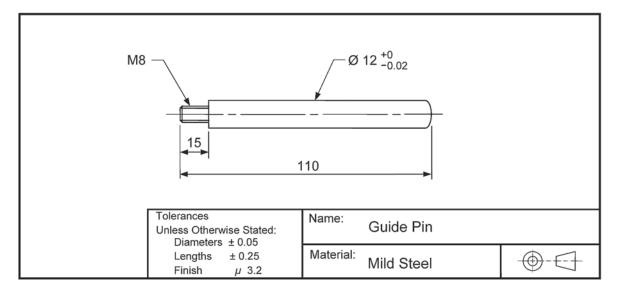



Figure 6

The diameter of the guide pin has been specifically toleranced.

| d. | Explain why the general tolerance has not been applied to this diameter. |
|----|--------------------------------------------------------------------------|
|    |                                                                          |
|    |                                                                          |
|    |                                                                          |

2 marks

Figures A and B show an HSS tool and a cemented carbide tool.



**e.** Which is the cemented carbide tool?



1 mark

One of the tools which will be used to make the spindle on page 26 is shown in Figure 7.

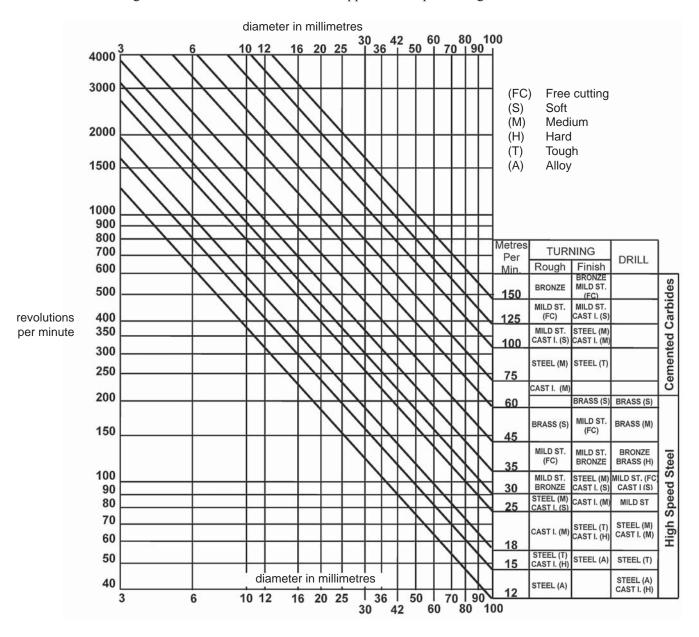



Figure 7

|     |        | rigure /                                                       |                  |
|-----|--------|----------------------------------------------------------------|------------------|
| f.  | i.     | What is the name of this tool?                                 |                  |
|     | ii.    | Which feature of the spindle will be machined using this tool? |                  |
|     |        |                                                                | 1 + 1 = 2  marks |
| Wh  | ile us | ing the tool shown in Figure 7, the spindle starts to chatter. |                  |
| g.  |        | plain what you would do to eliminate the chatter.              |                  |
| 0   | 1      |                                                                |                  |
|     |        |                                                                | 2 marks          |
| The | threa  | ad of the spindle is labelled M12 $\times$ 1.75.               |                  |
| h.  | i.     | What does the 12 indicate?                                     |                  |
|     | ii.    | What does the 1.75 indicate?                                   |                  |
|     |        |                                                                | 1 + 1 = 2 marks  |

A cemented carbide tool is being used to finish turn the  $\emptyset$  22 of the spindle.

i. Use the nomogram shown below to calculate the approximate rpm setting for the lathe.



|    |                                                                        | 2 marks |
|----|------------------------------------------------------------------------|---------|
| j. | Use the nomogram to find the <b>cutting speed</b> for drilling bronze. |         |
|    | Cutting speed                                                          |         |
|    |                                                                        | 1 mark  |

rpm\_

The soft jaws of the woodworking vice will be milled to length on a vertical milling machine and held in a vice as shown in Figure 8.

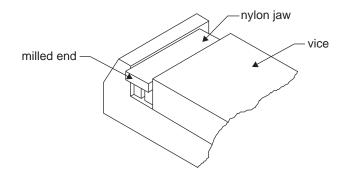



Figure 8

#### **Question 4**

The nylon jaw in Figure 8 is sitting on parallel strips.

**a.** Why is it important to tap down the nylon jaw so that the parallel strips do not move?

1 mark

**b.** What type of milling cutter would be suitable for milling the ends of nylon jaws?

1 mark

When checking the milled end of the nylon jaw, it was found to be out of square as shown in Figure 9.

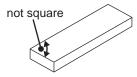



Figure 9

- **c. i.** What is the most likely cause for the milled end being out of square?
  - **ii.** Explain in detail how to fix this problem so that the ends are milled square.

1 + 1 = 2 marks

Total 40 marks