V

2009 VCE VET Engineering Studies Certificate III GA 2: Examination

GENERAL COMMENTS

The number of students who sat the 2009 Engineering Certificate III examination was very low. Because Sections A and B were the same as for the Certificate II exam, the comments for these two sections also reflect the Certificate II student responses.

Student performance on Section B – Reading and interpreting drawings had improved from previous years. Sketching to conventional drawing systems (that is, correct views and dimensioning) continues to be a weak point for students.

In the short answer section of the paper the following general approaches were followed in allocating marks.

- To gain marks, responses needed to be consistent with the level of knowledge expected of a trainee in the engineering industry at Certificate III standard.
- If a response did not address the subject of a question it was not given any marks.

SPECIFIC INFORMATION

Section A – VBN 771 Apply electrotechnology principles in an engineering environment

The table below indicates the percentage of students who chose each option. The correct answer is indicated by shading.

Question	% A	% B	% C	% D	Comments
1	0	0	13	88	Students may have confused open circuit conditions with closed circuit conditions. Option B, the total supply voltage, would have been correct for open circuit conditions.
2	13	88	0	0	
3	25	75	0	0	
4	0	0	88	13	
5	13	13	50	25	
6	0	0	13	88	The question asked for a factor which does not effect resistance; however, students may have chosen a factor which does effect resistance.
7	25	50	0	25	
8	13	0	50	38	
9	63	0	25	13	
10	13	75	0	13	
11	13	13	25	50	Students may have lacked understanding of the purpose of a safety switch, believing that it does exactly the same job as a fuse. A fuse will blow if a circuit is overloaded, but safety switches work on current leakage.
12	13	25	13	50	
13	0	0	0	100	
14	13	88	0	0	
15	63	25	13	0	

Section B – VBN 773 Produce engineering sketches and drawings

Question 1

Marks	0	1	2	3	4	Average
%	13	38	13	13	25	2

Marks were allocated for:

- all necessary dimensions shown
- correct end view in third angle projection
- correct centre lines shown
- hidden detail correctly shown.

Common issues with this question included the incorrect view being drawn and over-dimensioning.

Question 2a-e.

Marks	0	1	2	3	4	5	6	7	Average
%	0	0	13	13	0	38	13	25	5

2a.

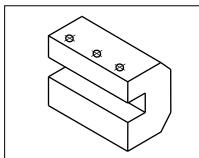
Countersink diameter 8 (countersink was also accepted)

2b.

1.5 mm

2c.

18 mm


2d. Maximum 100.25/minimum 99.75

2e.

Type of Material	MS or mild steel
Material Size	Ø16 x 103

Question 3

ſ	Marks	0	1	2	3	4	Average
	%	25	13	38	0	25	1.9

Marks were allocated for:

- correct shape
- holes shown in the correct position
- all outlines complete
- isometric accuracy.

Section C – VBN 787 Apply mathematical principles to engineering designs

Question 1

Marks	0	1	2	Average
%	38	13	50	1.2
67%				

67%

Question 2						
Marks	0	1	2	Average		
%	88	0	13	0.3		
0.202						

0.393

Question 3

Marks	0	1	Average
%	13	88	0.9
1⁄4			

Question 4

Marks	0	1	2	Average
%	25	13	63	1.4
367.8				

Question 5				
Marks	0	1	2	Average
%	38	0	63	1.3

3.52 mm^2

Question 6a. Marks 0 1

Marks	0	1	2	Average
%	13	0	88	1.8
460				

Question 6b.

Marks	0	1	Average
%	13	88	0.9
163.2			

Ouestion 7

Question /					
Marks	0	1	2	3	Average
%	75	25	0	0	0.3
2.01 m^2					

Question 8

Marks	0	1	2	Average
%	63	0	38	0.8
56 57 mm				

56.57 mm

Question 9a.

Marks	0	1	2	Average	
%	63	13	25	0.7	
183.9 m^2					

Question 9b.

Marks	0	1	2	Average
%	50	13	38	0.9
18.20 m^3				

18.39 m³

Question 10

Marks	0	1	2	3	Average
%	50	0	0	50	1.5
2°15'					

Ouestion 11

Marks	0	1	2	Average
%	25	50	25	1

10.5 mm

Question 12

Marks	0	1	2	3	4	Average
	•	-		5		nverage
%	38	13	0	13	38	2

HOLE	Х	Y
'A'	15.858	44.142
'В'	47.320	20.0

Section D – VBN 788 Design and prototype components and/or small structures using engineering design principles

There were several questions in Section D where students performed poorly. Most were general mechanical aptitude and basic tolerancing questions, which should be well within the understanding of a student at Certificate III level. Question 2c. (an operational planning question) was also a question students struggled with. Operational planning has always been a weak area for students, and it appears that they do not practise this skill on a regular basis.

Question 1

Question	1											
Marks	0	1	2	3	4	5	6	7	8	9	10	Average
%	0	13	25	0	0	38	0	0	25	0	0	4.5

Marks were allocated for:

- the overall functionality of the design
- design of adjustable length
- size of materials selected (strength and functionality)
- adequate labelling (description) of design.

Question 2a-b.

Marks	0	1	2	3	Average
%	38	44	13	6	0.9

2a.

Any two of (or similar):

- can be tightened without locking up
- nut will not come loose
- will not squash pipe when tightened.

2b.

Answers between 22.2 mm and 22.5 mm

Question 2c.

Marks	0	1	2	3	4	5	6	Average
%	25	50	13	0	0	13	0	1.4

Op. No.	Operation description	Work-holding method	Equipment/Cutters
1	Face off end	Three jaw chuck	Turning tool
2	Turn diameter 12	Three jaw chuck	Turning tool
3	Turn thread major diameter	Three jaw chuck	Turning tool

4	Cut thread	Three jaw chuck	M6 die Die holder
5	Part off	Three jaw chuck	Parting tool
6	Face to length and chamfer	Three jaw chuck	Turning tool

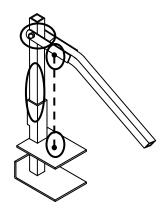
Question 2d.

Marks	0	1	2	Average
%	63	25	13	0.5

- less mechanical advantage
- more likely to bind/jam on column

Question 2e.

Marks	0	1	Average
%	50	50	0.5


Less mechanical advantage/harder to crush can

Question 2f.

Marks	0	1	Average
%	63	38	0.4
5 mm			

Question 2g.

Marks	0	1	2	Average
%	38	25	38	1

Question 2h.

Marks	0	1	Average		
%	69	31	0.3		
Getting fingers caught in nip points					

Question 2i.

Marks	0	1	Average
%	75	25	0.3

To allow the crusher plate to go all the way down the column

Question 2j.

Marks	0	1	2	Average
%	13	38	50	1.4

• bolt to the wall

• have a larger base

Question 3a.

£								
Marks	0	1	2	3	4	5	6	Average
%	38	13	25	0	0	13	13	2

Marks were allocated for:

- overall functionality of design
- size of materials selected (strength and functionality)
- adequate labelling (description) of design.

Question 3b.

Marks	0	1	Average		
%	100	0	0		
Have three legs instead of four					

Question 3c.

Marks	0	1	Average
%	44	56	0.6
Eor strongth	-		•

For strength

Question 3d.

Marks	0	1	Average
%	100	0	0

To prevent the tube from being crushed when tightened

Question 3ei-ii.

Marks	0	1	2	Average
%	75	0	25	0.5

Option B. The other two options have a 'plus' tolerance which will not fit into the inside of the tube.